DynaMorph: self-supervised learning of morphodynamic states of live cells
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1. Background

Cellular morphology and dynamics is widely used to ana-
lyze healthy and disease states of cells in clinical pathology
and to discover fundamental biological mechanisms. How-
ever, due to difficulties in labelling functional states (with
either molecular markers or manual annotations), analyz-
ing morphodynamic state of human cells still remains a
challenging task. In this work, we seek to develop a high-
throughput method based on self-supervised learning that
could perform automated quantitative analysis on morpho-
dynamic behavior of human cells.

Previous work on cell morphological analysis has focused
on imaging of cells labeled with fluorescent markers or
genetic markers, or phase contrast imaging of live cells.
Morphological state analysis has relied on low dimensional
representations from geometric or biophysical models. Re-
cent introduction of supervised and self-supervised learning
enabled more complex and diverse morphological labeling
and representations.

Key technological limitations hindered the application of
high-throughput analysis on human cells with temporal dy-
namics: a) Difficulties in labelling live human cells with
no/minimum perturbation; b) Huge amount of annotations
required for large cell imaging dataset; ¢) Complexity in
morphological description of cell states due to the high di-
mensionality. Therefore, in this work we explore use of
quantitative label-free measurements of cellular morphody-
namics and deep learning to overcome these limitations.

We acquired reproducible measurements of cellular architec-
ture and dynamics of human microglia under immunogenic
perturbations (Figure 1A) using quantitative label-free imag-
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ing with phase and polarization (QLIPP, Figure 1B) (Guo
et al., 2020). To discover and identify morphodynamic
states, we developed DynaMorph, a self-supervised learn-
ing based framework. DynaMorph utilizes a autoencoder
based model to learn quantitative and generalizable latent
representations of morphology (Figure 1D), resulting de-
scriptors are used for identification of morphological states
as well as state transitions (Figure 1E).

2. Results Highlights

2.1. Label-free imaging of cultured human microglia
under diverse perturbations

We performed two sets of label-free imaging experiments on
primary human microglia, composed of one control experi-
ment used as training set and one perturbation experiment
for validation and cell state discovery. In both experiment
phase contrast and retardance channels were reconstructed
and used in the following analysis. In the perturbation ex-
periment, multiple treatments relevant to infection or cancer
were applied to mimic different inflammatory brain states.

2.2. Learning interpretable description of morphology
with unsupervised encoding that generalizes across
perturbations

Collected imaging data were first processed by in-house
developed segmentation (U-Net (Ronneberger et al., 2015)
based) and tracking modules (Jagaman et al., 2008) to gen-
erate patches and movies of individual cells. Then a vector
quantized variational autoencoder (VQ-VAE) (van den Oord
& Vinyals, 2017) is applied to extract latent representations,
which are used as morphological descriptors in downstream
analysis. The autoencoder, trained on a combination of re-
construction task and self-supervision task enforced by a
temporal matching loss, demonstrates strong robustness and
generalizability when applied to unseen test data.

Furthermore, we conducted quantitative analysis on the
latent space and observed correlations between top mor-
phological modes and major geometric properties of cells
including cell size, peak phase intensity, cell orientation,
etc.

Concatenation of latent representations from static frames
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Figure 1. DynaMorph enables automated discovery of mor-
phodynamic transitions in human microglia: (A) Human mi-
croglia are isolated from brain tissue and plated in 24-well plates
and perturbed with cytokines of relevance to infection (IFN beta,
IL17) or cancer (glioblastoma supernatant), (B) Morphodynamics
of perturbed microglia, along with control cells, are imaged using
quantitative label-free imaging with phase and polarization imag-
ing (QLIPP), which measures isotropic and anisotropic optical
path lengths of cells. (C) Cells were segmented and tracked by
in-house developed tools. (D) A generalizable and quantitative rep-
resentation of morphological states was learned from the thousands
of tracked cells using a self-supervised model that reconstructs
cell morphology. (E) Morphological states and transitions among
states under each perturbation were revealed via dimensionality
reduction (PCA and UMAP) algorithms and clustering of most
significant features.

along trajectories allows for study of cell morphodynamics.
In our observation, most trajectories that have stable mor-
phology also have localized latent representations, while
rare events of cells undergoing morphological transition dis-
played “leaps” in latent space that could be easily spotted
and isolated for further analysis.

2.3. Discovery of cell states from multimodal inputs:
morphology and motion

We evaluated the morphodynamic differences between mi-
croglia treated with pro- and anti-inflammatory perturba-
tions. Results show that microglia displayed a broad range
of morphology and motility upon perturbations. Among the
test conditions applied, two major groups: IL17 and IFN
beta versus GBM and control could be separated based on
top morphological modes and cell movement speed indica-

tor, suggesting existence of multiple cell morphodynamic
states.

The hypothesis is further evaluated through an unsuper-
vised clustering of cell morphodynamic descriptors, which
are composed of morphological representations (from VQ-
VAE) and cell movement speed indicator. We applied Gaus-
sian Mixture Model (GMM) and detected 2 major compo-
nents representing different morphodynamic states, both
having distinct appearance and motion patterns. The sepa-
ration of two components paralleled well with scRNA se-
quencing measurement of microglia, which hints a potential
correlation between morphodynamic/behavioral change and
transcriptomic change in response to perturbation.

3. Paper and Code Availability

Full manuscript of this work 1is available at
https://www.biorxiv.org/content/10.
1101/2020.07.20.213074v1

Open source python software for reconstruction of label-
free optical properties is available at https://github.
com/mehta-lab/reconstruct-order and for an-
alyzing cell states (DynaMorph) is available at https:
//github.com/czbiohub/dynamorph.
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