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Abstract
We propose Epiphany, a light-weight neural net-
work to predict the Hi-C contact map from
five commonly generated epigenomic tracks:
DNase I hypersensitive sites and CTCF, H3K27ac,
H3K27me3, and H3K4me3 ChIP-seq. Epiphany
uses 1D convolutional layers to learn local repre-
sentations from the input tracks as well as bidirec-
tional Long Short Term Memory (Bi-LSTM) lay-
ers to capture long term dependencies along the
epigenome. To improve the usability of predicted
contact matrices, we perform statistically princi-
pled preprocessing of Hi-C data using HiC-DC+
(1) and train Epiphany using an adversarial loss,
enhancing its ability to produce realistic Hi-C con-
tact maps for downstream analysis. We show that
Epiphany generalizes to held-out chromosomes
within and across cell types, and that Epiphany’s
predicted contact matrices yield accurate TAD
and significant interaction calls.

1. Introduction
In mammalian genomes, the three-dimensional (3D) hierar-
chical folding of chromatin in the nucleus plays a critical
role in the regulation of gene expression (2; 3). The 3D ar-
chitecture of chromatin has been elucidated through genome-
wide chromosome conformation capture (3C) assays such as
Hi-C, Micro-C, HiChIP, and ChIA-PET (4; 5; 6; 7) followed
by next generation sequencing, yielding a contact matrix
representation of pairwise chromatin interactions.

Over the past decade, large consortium projects as well
as individual labs have extensively used 1D epigenomic
assays to map regulatory elements and chromatin states
across numerous human and mouse cell types. While at
least some of these 1D assays have become routine, mapping
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3D interactions with Hi-C remains relatively difficult and
prohibitively costly, and high-resolution contact maps (5Kb
resolution, 2 billion read pairs) are still only available for
a small number of cell types. This raises the question of
whether it is possible to train a model to accurately predict
the Hi-C contract matrix from more easily obtained 1D
epigenomic data in a cell-type specific fashion.

Recent deep learning models have made advances in pre-
dicting 3D genomic structure. For example, DeepC (8)
presented a transfer learning framework by learning useful
DNA representation from epigenetic marks, then fine-tuning
the model to predict the Hi-C contact map. Akita (9) de-
signed a convolutional neural network to predict the Hi-C
contact maps of multiple cell types from DNA sequence.
However, neither method uses epigenomic data as an input
signal, and the resulting models capture very limited cell-
type specific information about 3D genomic architecture.
We therefore propose Epiphany, a light-weight neural net-
work to predict the cell-type specific Hi-C contact map from
commonly generated epigenomic tracks.

2. Methods
2.1. Dataset

Hi-C data. Deeply sequenced Hi-C data for GM12878
from the 4DN data portal was used to train the model. The
data set was processed using the hg38 genome assembly
and binned at 10Kb resolution to generate chromosome
contact maps. Normalization was conducted using the HiC-
DC+ R package using the observed over expected (Obs/Exp)
ratio from a negative binomial regression that accounts for
genomic distance and other covariates. During training,
chromosome 3, 11, 17 were held-out as test chromosomes.

Epigenetics data. Five input epigenomic tracks includ-
ing DNaseI, CTCF, H3K4me3, H3K27ac, H3K27me3 for
genome assembly hg38 were downloaded from the EN-
CODE data portal. Data were downloaded as bam files,
and the replicates for each track were merged using the
pysam python module. We then converted merged bam files
into bigWig files with deepTools bamCoverage (binSize 10,
RPGC normalization, other parameters as default). Genome-
wide coverage bigWig tracks were later binned into 100bp
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Figure 1. Model architecture and prediction scheme. (A) Model Architecture. (B) Prediction scheme of Hi-C contact map. (C) Ground
truth target, model prediction on the Hi-C contact map (2Mb region), and input epigenomic tracks (3.2Mb receptive field).

bins, and bin-level signals for the 5 epigenomic tracks were
extracted as input data for the model.

2.2. Model Architecture

Epiphany consists of two parts: a generator to extract infor-
mation and make predictions, and a discriminator to intro-
duce adversarial loss into the training process (Fig. 1A). In
the generator, we first used a series of convolution modules
to featurize epigenomic information in a sliding window
pattern. For one output vector, which covers a distance of
1Mb orthogonal to the diagonal, we used a window size
of 1.2 Mb centered at the corresponding region as input
(Fig. 1B). We then employed a Bi-LSTM layer to capture
the dependencies between output vectors, and a total of 3.2
Mb input were processed in one pass for prediction of 200
output vectors. At the end, a fully connected layer was used
to integrate signals and make the final prediction. We also
introduced an adversarial loss and a discriminator, which
consists of several convolution modules that are applied
during training and pushes the generator to produce realistic
samples (Fig. 1C).

CNN layers. The input epigenomic tracks are divided into
overlapping windows, with a window length ofm = 12, 000
bins (1.2Mb) and a stride of 1,000 bins (100Kb). We re-
fer to the windowed inputs as X = {x1, ..., xn}, where
xi ∈ Rc×m corresponds to window i, n is the total number
of windows, and c is the number of epigenetic tracks. A
series of four convolution modules are used to featurize

each window into a vector of dimension d = 900 (after
flattening), where each convolution module consists of a
convolutional layer with ReLU activation, max pooling, and
dropout. We define Z = {z1, ..., zn} as the flattened out-
put of the final convolution module where zi ∈ Rd is the
representation for window xi.

Bi-LSTM layers. The Bi-LSTM layers receive sequence
Z = {z1, ..., zn} as input and generate a new sequence Z̃ =
{z̃1, ..., z̃n}, where z̃i ∈ R2d. To produce the final output,
every element of Z̃ is passed through a fully connected layer
yielding the output sequence Ŷ = {ŷ1, ..., ŷn}. Each ŷi ∈
Rd′ is a vector of dimension d′ = 100 and corresponds to a
zig-zag pole in the Hi-C matrix, similar to DeepC (shown
in Fig. 1). Epiphany uses a total of three Bi-LSTM layers,
with residual connections between successive layers.

Adversarial loss. Generative adversarial networks (GAN)
consist of two networks, a generator G with parameters θG

and a discriminatorD with parameters θD, that are adversar-
ially trained in a zero-sum game (10; 11). During training,
the generator learns to fool the discriminator by synthesizing
realistic samples from a given input, while the discriminator
learns to distinguish real samples from synthetic samples.
To train Epiphany, we employed a convex combination of
pixel-wise MSE and adversarial loss. Given a dataset D
and a trade-off parameter λ, Epiphany solves the following
optimization problem during training:

min
θG

max
θD

λLadv(θG , θD) + (1− λ)LMSE(θ
G)
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Ladv(θG , θD) =E(X,Y )∼D[log(D(Y ))+

log(1−D(G(X)))]

LMSE(θ
G) = E(X,Y )∼D

∑
i∈[n]

∑
j∈[d′]

(Yij − [G(X)]ij)
2


In our framework, G is the CNN-LSTM architecture de-
scribed in the previous sections while D is a simple four
layer 2D CNN. In our experiments, we used λ = 0.05.

3. Results and Evaluation
3.1. Epiphany generates realistic Hi-C contact maps

Past approaches that predict the 3D genome structure from
1D inputs use pixel-wise MSE to quantify the similarity
between predicted and ground truth Hi-C maps. However,
pixel-wise losses for images have been shown to be overly
sensitive to noise (12) and to yield blurry results when used
as objectives for image synthesis (13; 10). These issues
can be mitigated with an adversarial loss, which enables the
model to generate highly realistic samples, while circum-
venting the need to explicitly define similarity metrics for
complex modalities of data.

We benchmarked the model between two loss functions,
MSE only loss vs. convex combination of MSE and adver-
sarial loss. The Pearson and Spearman correlations of both
models are shown in Table 1.

Loss Pearson Pearson Pearson
Function (all) (train) (test)

MSE only 0.7833 0.8045 0.6494
MSE+GAN 0.7408 0.7687 0.5636

Loss Spearman Spearman Spearman
Function (all) (train) (test)

MSE only 0.7381 0.7605 0.5963
MSE+GAN 0.6899 0.7191 0.5048

Table 1. Mean Pearson and Spearman correlation for two loss
functions

Epiphany demonstrates better performance for both correla-
tion metrics with the MSE loss than the convex combination
of MSE and adversarial loss. However, we observed that the
high correlations from MSE trained models were associated
with blurriness in the predicted contact maps, and while the
correlations produced by the combined loss models may
have been slightly diminished due to small deviations in the
sharper predictions.

Therefore, we reasoned that correlation may not be an ap-
propriate evaluation metric and decided to use results from
the combined loss (MSE+Adversarial loss) for downstream
analysis. A visual comparison of the blurry prediction made
by MSE trained models vs. the more realistic prediction
made by the combined loss is shown in Fig. 2.

Figure 2. Prediction comparison between two loss functions on
region (chr17:70670000-73880000). (Top) Normalized Obs/Exp
ground truth. (Middle) Prediction from MSE-only model. (Bot-
tom) Prediction from combined loss model.

3.2. Bi-LSTM layer captures potential contribution of
distal elements

Given the sequential nature of Hi-C contact maps, inter-
actions on consecutive output vectors are unlikely to be
independent from one another. We found that Bi-LSTM
layers introduce stronger dependencies between the output
vectors, which better equips Epiphany to leverage struc-
tures that span multiple genomic positions in Hi-C maps
(such as edges of TADs). Furthermore, Bi-LSTM layers
overcome the limitation of CNNs by enabling each output
vector to make use of important signals beyond the input
window. To explore the contribution of input signals, we
calculated the saliency score and SHAP value for attribu-
tions. Fig. 3A shows an example region (chr17:55945000-
58945000) where a distal regulatory element may contribute
to the 3D genome structure prediction through the Bi-LSTM
layers.

3.3. Epiphany predicts cell-type specific 3D structure

Since Epiphany uses epigenomic marks as input, it can po-
tentially generalize to a new cell type and predict cell-type
specific 3D structures. Here we first trained Epiphany on a
single cell type (GM12878) and tested on another (K562) to
check the generalization performance. Chromosome 3, 11,
17 are completely held-out during training, and chr17 is used
for testing on K562. We obtained an average Pearson cor-
relation of 0.4732 across all genomic distances (Spearman
correlation of 0.4268).

Fig. 3B shows a differential region (chr17:70670000-
73880000) between GM12878 and K562, providing contact
maps on the top, followed by input tracks on the bottom.
For GM12878, peaks in DNaseI, H3K27ac and H3K27me3
between 71800000 and 72700000bp region are important
in the model and contribute to the specific interaction high-
lighted in the map. K562 does not have strong interactions
in this region, and due to the lack of input peaks, Epiphany
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Figure 3. Results summary. (A) Example region (chr17:55945000-58945000) comparison between introduction of Bi-LSTM layer vs.
1d CNN layer. (Left) Ground truth Hi-C contact map and Bi-LSTM prediction, followed by input epigenomic signals (blue), saliency
score (green) and SHAP values (yellow). Epigenomic signals from top to bottom: DNaseI, H3K27ac, H3K4me3, H3K27me3, CTCF.
(Right) Prediction and attribution with 1D CNN layer. (B) Cell-type specific prediction comparing GM12878 (left) vs. K562 (right) on
example region (chr17:70670000-73880000). (C) Prediction comparing full model (middle) vs. CTCF-ablated model (bottom) on region
(chr11:26300000-2930000). (D) Prediction comparing full model (left), DNaseI-ablated model (middle) and CTCF+H3K27ac model
(right) on region (chr17:70670000-73880000).

correctly predicts a weak interaction.

3.4. Epiphany learns the role of CTCF in genome
folding

To confirm the importance of CTCF for predicting 3D in-
teractions, we retrained the model with the entire CTCF
track masked as zero and compared with the original model
using all input tracks. Fig. 3C shows an example region
(chr11:26300000-29300000) where the prediction of the full
model and the CTCF-ablated model diverge. By exploiting
the CTCF signal, the full model can accurately predict the
entire TAD structure in this region (Fig. 3C middle), while
the CTCF-ablated model (Fig. 3C bottom) only captured
some of the interactions and “hallucinates” a small TAD
structure between region chr11:27530000-28100000 that is
not present in the true map (Fig. 3C top).

3.5. Epiphany identifies the contribution of epigenomic
marks to 3D structure

In the comparison between GM12878 vs. K562, we found
that some H3K4me3 peaks in distal regions gain importance
in the model (Fig. 3B). We then wondered whether features

from different epigenomic tracks could compensate for each
other and more generally what redundancies were present
among the tracks.

This idea matched our observations from the ablation anal-
ysis. We compared the prediction for this region using
a model trained on all inputs, without DNaseI, or with
CTCF+H3K27ac only. Epiphany was still able to accu-
rate predictions in this region after ablating DNaseI; fea-
ture attribution indicated that in place of DNaseI signal
(Fig. 3D, grey box), this model gave higher importance to
H3K27me3 peaks (purple box) in order to predict the inter-
action. However, after ablating all signals except for CTCF
and H3K27ac, the model failed to find alternative predictive
signals and missed the boundary.

4. Conclusion
By training on epigenomic data, Epiphany is able to predict
cell-specific 3D chromatin architecture, generalize across
cell types, and attribute individual 3D interactions to epige-
nomic events. Future work will focus on integrating ge-
nomic DNA sequence with epigenomic data as inputs to the
model.
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