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Abstract
Single-cell multimodal omics technologies pro-
vide a holistic approach to study cellular decision
making. Yet, learning from multimodal data is
complicated because of missing and incomplete
reference samples, nonoverlapping features and
batch effects between datasets. To integrate and
provide a unified view of multi-modal datasets,
we propose Multigrate. Multigrate is a generative
multi-view neural network to build multimodal
reference atlases. In contrast to existing meth-
ods, Multigrate is not limited to specific paired
assays while comparing favorably to existing data-
specific methods on both integration and impu-
tation tasks. We further show that Multigrate
equipped with transfer learning enables mapping
a query multimodal dataset into an existing refer-
ence atlas.

1. Introduction
Recent advances in single-cell technologies allow us to
quickly and efficiently measure several features of cells
at the same time. For instance, CITE-seq (Stoeckius et al.,
2017) measures gene expression levels and surface protein
counts, and ATAC-seq (Buenrostro et al., 2015) measures
transcriptome and chromatin openness in one cell. While
RNA-seq data integration has become a well-studied prob-
lem, similar methods for multi-omics are still pending.

Several approaches have tackled the integration of paired
single-cell multi-omic measurements such as CITE-seq
or/and ATAC-RNA (Gayoso et al., 2021; Argelaguet et al.,
2020; Hao et al., 2020). However, existing methods are
limited to a specific paired technology or they use simple
linear models and lack imputation mechanisms for missing
modalities. Additionally, none of the existing methods al-
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low mapping novel multi-omic query datasets (Lotfollahi
et al., 2020) to reference atlases constructed from multiple
multi-omic technologies. Finally, none of these models can
robustly integrate datasets where non-matching measure-
ments (Lopez et al., 2019; Lotfollahi et al., 2019).

Here, we present Multigrate, an unsupervised deep gener-
ative model to integrate multi-omic datasets and address
these challenges. Multigrate learns a joint latent space com-
bining information from multiple modalities from paired
and unpaired measurements while accounting for technical
biases within each modality. Combined with transfer learn-
ing, Multigrate can map novel multi-omic query datasets
to a reference atlas and impute missing modalities. We
first compare our model with state-of-the-art approaches on
integration and imputation tasks and later demonstrate the
multi-modal reference mapping feature of Multigrate.

2. Methods
We first define the observed data as X = {Xi}i=1,...,n

for modalities 1, . . . , n, where Xi denotes observations for
modality i and can be empty in case of a missing modality.
Let S = {Si}i=1,...,n be the set of study labels (i.e. samples,
experiments across labs or sequencing technologies), and
let Zi denote the conditional modality representation. We
employ the Product of Experts (PoE) framework (Lee &
van der Schaar, 2021) to calculate the joint distribution for
data that comes from several modalities, also when some of
the modalities are partially missing. Let φ = {φi}i=1,...,n

be parameters of the posterior distributions q and let θ =
{θi}i=1,...,n be parameters of the data distribution p. We
denote the joint latent representation by Zjoint and the joint
posterior by qφ(Zjoint|X,S). We model the joint posterior
as the product of the conditional marginal posteriors:

qφ(Zjoint|X,S) = Πn
i=1qφi(Z

i|Xi, Si), (1)

setting qφi(Z
i|Xi, Si) to 1 if modality i is missing.

Furthermore, modality encoder fi outputs parameters of
qφi and modality decoder gi outputs parameters of pθi . We
assume that qφi(Z

i|Xi, Si) = N (Zi|µi, σi), where µi, σi
are the output of the modality encoder fi(Xi, Si). The
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Figure 1. (a-b) Multigrate architecture and applications.

parameters of the joint distribution are calculated as

µjoint = (µ0σ
−1
0 +

n∑
1=1

miµiσ
−1
i )(σ−10 +

n∑
i=1

miσ
−1
i )−1,

σjoint = (σ−10 +

n∑
i=1

miσ
−1
i )−1,

(2)

where µ0 and σ0 are the parameters of the prior N (µ0, σ0),
which in our case is standard normal, andmi is 1 if modality
i is present and is 0 otherwise.

We formulate the objective function for a specific dataset as

LAE(φ, θ,Xi, Si, α, η) =

αEqφ(Zjoint|Xi,Si)[log pθ(Xi|Zjoint, Si)]
− ηKL(qφ(Zjoint|Xi, Si)||pθ(Zjoint|Si)),

(3)

where α and η are hyper-parameters. Finally, to ensure
that different datasets are integrated well, we utilize the
maximum mean discrepancy (MMD) loss. It allows to
minimize the distance between two distributions and was
previously shown to improve the performance of VAE-
based models (Lotfollahi et al., 2019). We calculate the
MMD loss between the joint representations for pairs of
datasets. In the implementation, we use multi-scale ra-
dial basis kernels defined as k(x, x′) =

∑l
i=1 k(x, x′, γi),

where k(x, x′, γi) = exp(γi||x − x′||2) is a Gaussian ker-
nel, x, x′ are observations from two different distributions
and l, γ1, . . . , γl are hyper-parameters. Given d datasets

X1, . . . , Xd with study labels S1, . . . , Sd, the final loss func-
tion is defined as

Lmultigrate =

d∑
i=1

LAE(φ, θ,Xi, Si, α, η)

+ β

d∑
i,j=0
i<j

LMMD(Zjointi , Zjointj )

(4)

where α, β, η are hyper-parameters.

The decoder part of the network consists of two parts (Figure
1a): zjoint is first fed into the shared decoder g that re-
introduces modality variation to the joint to obtain modality-
specific representations. Then modality decoders gi take
the modality-specific representations as input and output the
parameters of pθi . By default, a negative binomial loss is
used for the RNA modality, in which case the distribution
mean is output by the modality decoder, and the discrepancy
parameter is learned per batch. For normalized protein
counts and normalized binary chromatic peaks, we use the
mean squared error loss. In this case, the output of the
modality decoder can be seen as reconstructed data, hence
we refer to this part of the loss function as reconstruction
loss. The overall reconstruction loss is the sum over all
modalities.

We also implement the single-cell architectural surgery ap-
proach introduced in (Lotfollahi et al., 2020) to allow the
building of reference atlases and mapping of new query data
into the reference atlas. When a new query data needs to be
added to an existing reference atlas built with Multigrate,
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we introduce a new set of batch labels Sd+1 and fine-tune
conditional weights in modality decoders fi and modality
encoders gi.

To find optimal hyper-parameters, i.e. α, β and η, we used
the grid search over the parameter space. To quantitatively
access the performance of different methods, we use some
of the metrics proposed in (Luecken et al., 2020). Adjusted
rand index (ARI), normalized mutual information (NMI),
average silhouette width (ASW) cell type and isolated label
silhouette are biological conservation metrics that measure
how much of biological variance was preserved after the
integration. Graph connectivity and ASW batch are batch
correction metrics (in cases where there are several batches
present in the data) to assess how well batch effects were
removed after integration. The final score was calculated as
0.4*batch correction + 0.6*bio conservation.

We tested Multigrate on several peripheral blood mononu-
clear cell (PBMC) datasets: Dataset 1 is a paired RNA-
seq/ATAC-seq dataset (10x); Datasets 2, 3, and 4 (Hao et al.,
2020; Kotliarov et al., 2020; Stephenson et al., 2021) are
CITE-seq datasets. All datasets were quality controlled
and preprocessed following the same pipeline. RNA-seq
datasets were normalized to sum up to 10, 000 and log(x+1)
transformed. Peaks in Dataset 1 were binarized and log-
normalized as above. Protein counts were normalized us-
ing the centered log-ratio transformation (Stoeckius et al.,
2017).

Figure 1a depicts the complete architecture of Multigrate
and Figure 1b lists possible applications of our method
such as multi-modal reference building, query to reference
mapping, and imputations of missing modalities which we
investigate in the following.

3. Results
3.1. Benchmarking multi-modal integration quality

We applied Multigrate on three datasets (1-3) to assess its
ability to integrate a multi-modal single-cell dataset using
paired single-cell measurements ranged from CITE-seq to
joint ATAC-RNA. We compared our model against three
other methods: MOFA+ (Argelaguet et al., 2020), Seurat v4
(Hao et al., 2020) and totalVI (Gayoso et al., 2021).

In the benchmarks experiments, totalVI was run with de-
fault parameters. In Seurat, we first calculated the weighted
nearest neighbor (WNN) graph, and then to obtain embed-
dings in a latent space, we ran supervised PCA with default
parameters. When multiple batches were present in the data,
we first performed the integration for each modality sepa-
rately using Seurat v4 and Signac (Stuart et al., 2020) and
then ran the WNN analysis.

Figure 2a,b shows the UMAP of the integrated Dataset
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Figure 2. (a) UMAP embedding for the latent space of Multigrate
for Dataset 3. (b) Integration quality metrics for Dataset 3. (c)
Benchmarking against existing methods across three datasets.

3 and the individual metric scores for the same dataset.
Multigrate performed well in both the batch correction met-
rics and the bio-conservation metrics and overall performed
slightly better than all the other three methods. Figure 2c
depicts the overall score for all three datasets demonstrat-
ing the robust performance of our method against existing
approaches. Since totalVI is a method for CITE-seq in-
tegration, we benchmarked it only on the two CITE-seq
datasets. Dataset 1 does not contain batches, therefore only
the batch-independent metrics are reported. We observed
that Multigrate compares favorably to the existing methods.

3.2. Multi-modal reference building and mapping
query

To demonstrate Multigrate’s functionality to build reference
atlases and map new query data, we first built a healthy
blood cell atlas using healthy cells from Datasets 1, 2 and 4.
In total, the reference atlas comprised around 160, 000 cells.
The reference atlas incorporated measurements from three
modalities: gene expressions, protein counts, and chromatin
openness. Next, we mapped a new query dataset consisting
of 50, 000 sampled diseased COVID-19 cells from Dataset
4 into the reference atlas by fine-tuning the new conditional
weights using scArches (Lotfollahi et al., 2020). Figure 3a-
c shows the UMAPs of the integrated reference and query
data together across studies, cell types and conditions. We
observe that the query was well integrated into the reference.

To transfer cell-type annotations from the reference data
to the query, we trained a random forest classifier on the
reference data and predicted cell types for the query data.
The classifier achieves an overall accuracy of 79% over all
cell types. Figure 3d shows a heatmap of the confusion
matrix between the true and the predicted cell types. The
cell types that were not correctly classified, e.g. ASDC or
Treg, were present in the reference as very small populations
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Figure 3. (a-c) UMAPs of the integrated reference and query
across studies, cell types and conditions. (d) Heatmap of a confu-
sion matrix between true cell types and predicted cell types for the
query.

comprising less than 100 cells each. Overall, we observed
that Multigrate can successfully build multi-modal reference
atlases, update the atlas with new query datasets and transfer
information from reference to query.

3.3. Imputation of missing modalities

Multigrate can also integrate unpaired datasets, for instance,
CITE-seq data and RNA-seq data, and impute missing
modalities as protein abundance in this case. To illustrate
this functionality, we leveraged a PBMCs CITE-seq dataset
(Gayoso et al., 2021), consisting of 15, 000 cell with both
transcriptomic and 14 protein measurements. We first inte-
grated 10, 000 paired observations and 5, 000 RNA-seq only
observations, where we left out protein counts in the latter
as ground truth. Then we imputed protein expression and
calculated Pearsons’s correlation coefficients between the
predicted protein expressions and the ground truth. We com-
pared the performance of Multigrate on this task to Seurat
v4 and totalVI which were run with default parameters.

As an example, we observe the imputed CD3 protein agrees
with the ground truth protein abundance (Figure 4a). Next,
we evaluated the overall accuracy of the imputed measure-
ments for individual proteins and overall average perfor-
mance (see the last column of the barplot in Figure4b).
These results demonstrate the generalization power and ro-
bustness of Multigrate in imputing missing proteins com-
pared to state-of-the-art models as totalVI specifically de-
signed for this task. On average, Multigrate slightly outper-
forms both of the other methods.
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Figure 4. (a) UMAPs of observed expressions of CD3 (left) and im-
puted expressions by Multigrate (right). (b) Bar plot of Pearson’s
correlation coefficients across all proteins comparing Multigrate,
Seurat and totalVI.

4. Conclusion
We introduced Multigrate, a scalable deep learning approach
to learn a joint representation from multi-omic single-cell
datasets. While Multigrate is generalizable to potentially
any multi-omic technology, it compares favorably to exist-
ing integration approaches for specific paired measurements
for both integrating and imputation tasks. Multigrate is also
able to map multi-modal COVID-19 data onto a healthy
reference atlas and transfer knowledge from reference to
query.

We predict that the addition of regularization terms as cycle-
consistency (Zhu et al., 2020) would improve imputation
accuracy and unpaired data integration quality. Moreover,
replacing one-hot modality labels with learnable embed-
dings (Lotfollahi et al., 2021) to induce modality effect will
further help to decompose the explained variance for each
modality and increase the interpretability of the model by
comparing modality vectors.

With the increased availability of single-cell multi-omic
datasets, we expect Multigrate to enable users to easily in-
tegrate and analyze these data, providing a holistic view of
cells instead of looking through the lens of a single measure-
ment with limited information.

The code to reproduce the results is available at
https://bit.ly/3fOvupR.

https://bit.ly/3fOvupR
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Luecken, M., Büttner, M., Chaichoompu, K., Danese,
A., Interlandi, M., Mueller, M., Strobl, D., Zap-
pia, L., Dugas, M., Colomé-Tatché, M., and
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