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Abstract
We present low-dimensional latent representa-
tions learnt by the β−VAEs from the graph-
topological structures encoding pharmacophoric
features. The controlled information compres-
sion of these molecular fingerprints effectively
removes the ambiguous redundancies and con-
sequently results in encoding the chemically se-
mantic latents. This latent molecular semantics
allows for various tasks, from molecular similarity
assessment to better-targeted search of the chemi-
cal space and drug discovery. We investigate the
performance of the learnt latents of various di-
mensions on the ligand-based virtual screening
task.

1. Introduction
Variational Autoencoder (VAE) (Kingma & Welling, 2014;
Rezende et al., 2014) has been successfully used in genera-
tive modelling and representation learning due to efficient
removal of the information redundancies in the original data
manifold. Adding extra weight β to the KL-regularisor in
VAE objective either improves the quality of reconstruction
or results in learning disentangled representations (Higgins
et al., 2017; Alemi et al., 2018).

The sparsity of molecular profiles and drug response high-
dimensional data makes the downstream tasks, such as learn-
ing accurate prediction models, extremely difficult. VAEs
have been applied to biological data to tackle the inconve-
nience of non-informative dimensionality. Recently, VAE
latents were used to predict complex disease phenotypes
from gene expression samples, (Dincer et al., 2018) or to
improve drug response prediction accuracy (Rampášek L,
2019; Chiu et al., 2019)

In connection with molecular structure designs, VAEs were
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used to generate the novel chemical structures (Gómez-
Bombarelli et al., 2018). To our best knowledge, these
systems solely use the SMILEs1 (Weininger, 1988) as an
input. Despite its popularity, there are various pitfalls associ-
ated with this approach: the isomorphism between SMILES
representing the same structure is not explicitly clear to most
systems (Arús-Pous et al., 2019) as input sets will tend to
include only canonized SMILES (for cross database consis-
tency), further care is needed to infer the SMILES grammar
which is only implicitly present in a set of grammatical
compounds (Kusner et al., 2017).

Samanta et al. (2020); Shrivastava & Kell (2021) observed
that the latent space of the SMILEs compressing VAEs
exhibit certain chemical semantic similarity patterns and
proposed to use VAE as a stand alone molecular similarity
measure.

In contrast to SMILEs strings, the graph-topological repre-
sentations of molecular structures, such as circular finger-
prints (CFPs) (Rogers & Hahn, 2010), contain information
about molecular features in an accessible way by encoding
the topological environment of each atom. A useful variant
of CFPs are functional-class fingerprints (FCFPs), which
have feature based labels (corresponding to pharmacophore-
like atom feature such as hydrogen bond acceptors), as op-
posed to the atom-based labels of standard extended CFPs
(ECFPs) that describe the precise atomic environment.

Due to direct availability of the sub-structural information,
CFPs become common tool in various ligand-based virtual
screening (VS) tasks (Cereto-Massagué et al., 2015; Riniker
& Landrum, 2013; Hu et al., 2012). VS is a widely used
cost-effective alternative to the traditional high-throughput
screening for the selection of initial hits in a search for
drugs with a given biological activity (Walters et al., 1998;
Bajorath, 2002; Gohlke & Klebe, 2002). VS is either
structure-based (Cheng et al., 2012; Lionta et al., 2014)
or ligand-based (Ripphausen et al., 2011; Geppert et al.,
2010). While the former utilises the information about the
macro-molecular target (protein or nucleic acid) via molecu-

1A SMILE string encodes a particular molecular graph using
a vocabulary of atom and bond symbols and a grammar to parse
these symbols into molecular connectivity. An isometric molecular
graph (representing the same underlying molecule) does not have
the same SMILE string. A canonical form that is identical for all
isometric molecular graphs is generated using Morgan’s algorithm.
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Figure 1. Chemical Semantics of Latent Space: The compression removes the redundancies of the 1024-dimensional chemically ambiguous
binary fingerprint into the 16-dimensional chemically comparable latent code. Molecule classes in the top frame are Pyrrolo[3,2-
e][1,2,3]triazolo[1,5-c]pyrimidines, right frame Aryl C-Glycosides, bottom frame Oligopeptide derivates, left frame 3-Aryl-pyrazolo[3,4-
d]pyrimidin-4-amines. The color of each point was determined by the QED druglikeness score. Clusters (represented by background color)
within the t-SNE visualization were assigned using DBSCAN. Common chemical substructures, highlighted in red, were automatically
assigned using FCMS algorithm.

lar docking, this target structural information is rarely avail-
able. The ligand-based VS focuses on small-molecule lig-
and structure only. Via representations of these ligands
(such as descriptors or structural fingerprints), meaningful
relationships between the structure and the activity of these
compounds are sought(Riniker & Landrum, 2013).

In this paper we investigate the latent space encoded by the
FCFP molecular fingerprints. We demonstrate that the VAE
leverages the graph-topological structure of the molecules
encoded by the fingerprints and organises the molecules in
the latent space in a chemically interpret-able way. Figure
1 depicts the representative molecular content of clusters
identified by DBSCAN within VAE’s latent space. The
four molecular sets clearly demonstrate that the representa-
tion successfully capture high level features, such as specific
drug-like scaffolds decorated with various substituents, natu-
ral product-like aryl C-glycosides and diverse oligopeptides
apparently selected for large molecular size. These molecu-
lar patterns are challenging to characterize and interpret-ably
compress.

Our main contribution is two-fold: 1) we demonstrate and

investigate the chemical semantics of latent representations
of the molecular fingerprints (LFPs); 2) we assess the impact
of the compression of FCFP fingerprint into 8, 16, 32, 64
and 128 dimensional latent space with various compression
weights β. We provide comparative evaluation of trans-
ferability of the latents on the target-assay pair prediction
task.

2. Methods
The CFPs are generated by an iterative algorithm which as-
signs numeric identifiers to each atom of a molecule depend-
ing on the identifiers assigned to its neighboring atoms. The
fingerprint algorithm generates a unique or near unique iden-
tifier which is independent of initial atom numbering while
solving the molecular graph isomorphism problem. Impor-
tantly, the resulting identifiers generated by this scheme are
comparable across molecules. These identifiers are then
hashed into a smaller, fixed-length space to define a bit
string of a predefined length. Typically, the length of 10 bits
have an acceptable bit-collision rate.

VAE approximates the joint density p(x, z) between ob-
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Figure 2. Latent Molecular Similarity: 2D slice of the latent space of two latent dimensions with the highest KL value. These are mainly
used by the 16-dimensional latent VAE to compress the 1024-dimensional fingerprints. The depicted 9-th and 14-th coordinate of the
locations of the variational posteriors are coloured according the QED values of the encoded molecule and counts of the carbon rings
present in the structures. Neither is the number of the carbon rings explicitly encoded by the FCFP algorithm, nor is QED-score which
quantitatively assesses the molecules according their drug-likeness based on the weighted average of Lipinski type descriptors(Bickerton
et al., 2012).

served data x ∈ X and low-dimensional latents z ∈ Z by
first encoding the input data sample x via the probabilis-
tic encoder p(z|x) and then reconstructing the sample via
latent decomposition: p(x; θ) =

∫
p(x|z; θ)π(z)dz. The

intractable encoder p(z|x) is approximated by using vari-
ational distribution q(z|x;φ). The representation learning
is enhanced by squeezing the encoded latent representa-
tion to an uninformative prior π(z) in the KL-divergence
KL[q(z|x;φ)||π(z)]. The training objective based on ev-
idence lower bound is given by the constrained optimisa-
tion problem: maxθ,φEx∼D[Eq(z|x;φ)[ln p(x|z; θ)]], with
constrain KL[q(z|x;φ)||π(z)] < ε. Higgins et al. (2017)
introduced a multiplicative hyper-parameter β of the KL
term, which improves the disentangling of the learnt la-
tent representations. The objective rewrites as: Lβ =
Eq(z|x;φ)[ln p(x|z; θ)]−βKL[q(z|x;φ)||π(z)]. The choice
of β = 1 corresponds to vanilla VAE. For β > 1, the latent
bottleneck becomes more constrained which encourages to
learn more efficient representations of the data.

In our setting the fingerprint maps the SMILEs represen-
tation into one of the vertices of the 1024-dimensional
cube. VAE then reduces ambiguous information of the
high-dimensional cube structure into lower dimensional
chemically informative variational posterior, which partially
extracts the imprints of the fingerprint hyper-cube pressed
in by Gaussian prior manifold via the KL-regulariser. As
fingerprint takes binary values, we use Bernoulli decoder
p(x|z), which results in the cross-entropy objective. Due
to the initial compression into the hashed binary code, it
is sufficient to use MLP architecture to parameterise the
inference and generative nets of VAE.

For evaluation of the chemical semantics via the distribution
of various structural features of the latents we use basic
physico-chemical molecular descriptors. These descriptors
include: molecular weight, polarity of the molecule (log
P), fraction of sp3-hybridized carbon atoms, a measure of
flexibility(count of NH and OH, number of rotatable bonds,
ring count, generally), and specifically number of aromatic
heterocycles, number of aromatic carbocycles, number of
aliphatic heterocycles, number of aliphatic carbocycles, total
polar surface area, quantitative estimation of drug-likeness
(QED-score) (Bickerton et al., 2012), see Figure 2.

3. Experiments
To investigate the properties of the LFP representations2

we trained VAE with latent dimensions 8, 16, 32, 64 and
128. Depending on the size of the latent space we used
different values of β. For 8 and 16-dimensional latents,
the latent space tend to collapse for β > 2, whereas for
larger dimensions even β = 3 provided useful compression.
We used fixed MLP architecture for all VAEs: input layer:
1024-long FCFP fingerprint; encoder: 256, 128, 128, 128,
64, 64, 64, 32, 32 with ReLu activation; decoder: 32, 64, 64,
64, 128, 256, 256, 1024 with ReLu activation. We explored
βs: 1.0, 1.5, 1.75, 2.0, 2.5, 3.0.

We extracted 550k molecules from the ChEMBL database
(v28) (Mendez et al., 2018), a public repository of biological
data including assay measurements at various protein targets.
We used cutoffs to extract the most reliable sets of molecules

2https://github.com/AndreaKarlova/molecular fingerprint latents
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Figure 3. Performance of LFPs on the Quantitative Structure Activity Relationship (QSAR) task (Geppert et al., 2010): R2 is computed
via 5-fold cross-validation due to the presence of the small data-samples. We use mean of R2 scores across all 5 folds scaled by the
max-min spread. The spread is larger for the small size datasets in the left part of the plots. With the sufficiently large target assay set it
shrinks to small bound comparable across all modelling approaches. For datasets around sizes between 250-500 data-points, the mean R2

performance becomes nearly constant, so the larger slope of the curve in the right part of the plots indicates fastly shrinking max-min
spread. The left figure depicts the performance of Molecular Fingerprint VAEs with various latent dimensions, while the right figure
plots the performance for latent dimension 128 and various values of β. For the sufficiently large datasets, the improvements stemming
from increasing the size latent space are rather minor. The larger value β for larger latent space also slightly helps with improving the
performance on the task.

for which the measured activity at a specific target-assay
pair was available. The cut-offs were: ChEMBL confidence
score ≥ 7, ≥ 50 compounds per set, target organism must
be Homo Sapiens, Mus Musculus or Rattus Norvegicus,
assay type must be Ki, Kd, EC50 or IC50 (Škuta et al., 2020;
Cortés-Ciriano et al., 2020). We were left with 2339 sets
of compounds each corresponding to a specific target assay
pair.

To train VAEs we sub-sampled 80k molecules, such that
there was small portion of molecules available in 75% of all
target-assay pairs sets. For the down-stream task evaluation,
we use the trained VAE encoder and compressed each of
2339 target-assay set. On the compressed target-assay set
we trained random forest regressor (RFs) (with 100 trees)
to predict the assay activity, see Figure 3 for the perfor-
mance summary. Despite the QSAR-RFs on raw 10-bit
FCFPs demonstrate significantly better performance when
measured by R2-score, note, that, for easier reproducibility
we do not compensate R2 score for the order-of-magnitude
larger number of predictors of raw FCFPs. It is a common
practice to adjust the FCFP length to the length of the repre-
sentation or fingerprint it is being compared to (Wu et al.,
2018; Probst & Reymond, 2018). However, for ECFP and
FCFP with typical radii, performance rolls off strongly as
the amount of bit collisions and string density increases as
the length of the fingerprint decreases (Gütlein & Kramer,
2016). In contrast, the LFPs performs in the robust manner:
even 8, 16 and 32-dimensional LFPs have good transferabil-

ity properties and well generalise to perform the task on the
order of magnitude larger dataset than the subsample of it
to which LFPs have been trained.

4. Conclusions and Discussion
We demonstrated that VAE with MLP architecture and
Bernoulli decoder removes the redundancies in the finger-
print hash. Resulting LFP space is naturally organised ac-
cording the similarity properties of physico-chemical de-
scriptors allowing for investigating of novel latent molecular
patterns.

The benefits of using fingerprints based VAEs over the
SMILE-based VAEs are: 1) a simpler architecture (MLP
is sufficient for the problem) comparing to SMILES which
requires more complex architectures, such as: RNNs, Con-
vNets or Transformers; 2) using CFP encoding of the phar-
macophoric features rather than specific element atom labels
captured by SMILEs (and ECFP), which do not adequately
capture bio-isosteric fragments (e.g. amide and ester func-
tional groups).

The potential drawback of using directly CFPs is the lack
of convertibility to a molecular graph, which limits de-novo
structure generation. Le et al. (2020) proposed an approach
to invert the ECFP fingerprint to SMILEs. Note, that the
decoders of the SMILE-based VAEs suffer with generat-
ing parsable SMILEs that are grammatically correct but
chemically meaningless (Kusner et al., 2017).
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Le, T., Winter, R., Noé, F., and Clevert, D.-A. Neuralde-
cipher – reverse-engineering extended-connectivity fin-
gerprints (ECFPs) to their molecular structures. Chemi-
cal Science, 11(38):10378–10389, 2020. doi: 10.1039/
d0sc03115a.

http://proceedings.mlr.press/v80/alemi18a.html
http://proceedings.mlr.press/v80/alemi18a.html
https://doi.org/10.1186/s12920-018-0460-9
https://doi.org/10.1186/s12920-018-0460-9
https://doi.org/10.1101/278739
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://proceedings.mlr.press/v70/kusner17a.html
http://proceedings.mlr.press/v70/kusner17a.html


Molecular Fingerprint VAE

Lionta, E., Spyrou, G., Vassilatis, D., and Cournia, Z.
Structure-based virtual screening for drug discovery: Prin-
ciples, applications and recent advances. Current Topics
in Medicinal Chemistry, 14(16):1923–1938, oct 2014.
doi: 10.2174/1568026614666140929124445.

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., Veij,
M. D., Félix, E., Magariños, M. P., Mosquera, J. F., Mu-
towo, P., Nowotka, M., Gordillo-Marañón, M., Hunter, F.,
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Rampášek L, Hidru D, S. P.-H.-K. B. G. A. Dr.vae: im-
proving drug response prediction via modeling of drug
perturbation effects. Bioinformatics, pp. 3743–3751, Oct
2019. doi: 10.1093/bioinformatics/btz158.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models. In Xing, E. P. and Jebara, T. (eds.),
Proceedings of the 31st International Conference on Ma-
chine Learning, volume 32 of Proceedings of Machine
Learning Research, pp. 1278–1286, Bejing, China, 22–
24 Jun 2014. PMLR. URL http://proceedings.
mlr.press/v32/rezende14.html.

Riniker, S. and Landrum, G. A. Open-source platform to
benchmark fingerprints for ligand-based virtual screening.
Journal of Cheminformatics, 5(1), may 2013. doi: 10.
1186/1758-2946-5-26.

Ripphausen, P., Nisius, B., and Bajorath, J. State-of-the-art
in ligand-based virtual screening. Drug Discovery Today,
16(9-10):372–376, may 2011. doi: 10.1016/j.drudis.2011.
02.011.

Rogers, D. and Hahn, M. Extended-connectivity finger-
prints. Journal of Chemical Information and Modeling,
50(5):742–754, apr 2010. doi: 10.1021/ci100050t.

Samanta, S., O’Hagan, S., Swainston, N., Roberts, T. J., and
Kell, D. Vae-sim: A novel molecular similarity measure
based on a variational autoencoder. Molecules, 25, 2020.

Shrivastava, A. D. and Kell, D. B. Fragnet, a con-
trastive learning-based transformer model for cluster-
ing, interpreting, visualizing, and navigating chemi-
cal space. Molecules, 26(7), 2021. doi: 10.3390/
molecules26072065. URL https://www.mdpi.
com/1420-3049/26/7/2065.
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