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Abstract

Link prediction, which is to predict the existence
of a link/edge between two vertices in a graph,
is a classical problem in machine learning. Intu-
itively, if it takes a long distance to walk from u to
v along the existing edges, there should not be a
link between them, and vice versa. This motivates
us to explicitly combine the distance information
with graph neural networks (GNNs) to improve
link prediction. Calculating the distances between
any two vertices (e.g., shortest path, expectation
of random walk) in training is time consuming.
To overcome this difficulty, we propose an anchor-
based distance: First, we randomly select K an-
chor vertices from the graph and then calculate
the shortest distances of all vertices in the graph to
them. The distance between vertices u and v is es-
timated as the average of their distances to the K
anchor vertices. After that, we feed the distance
into the GNN module. Our method brings signif-
icant improvement for link prediction with few
additional parameters. We achieved state-of-the-
art result on the drug-drug-interaction (i.e., DDI)
and protein-protein-association (i.e., PPA) tasks
of OGB (Hu et al., 2020). Our code is available at
https://github.com/lbn187/DLGNN.

1. Introduction
Many biological and medical tasks can be formulated as the
problems on graphs (Berg et al., 2017; Nguyen et al., 2019;
Gilmer et al., 2017; Kearnes et al., 2016). A graph is made
up of vertices and edges, which represent the entities and
the relations among entities respectively. Link prediction
is an important topic in graph learning, which is about to
predict the properties of edges (i.e., existence, edge type,
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etc). Link prediction1 can be applied to a wide range of
applications like drug re-propusing (Tsubaki et al., 2019),
drug-drug interaction prediction, etc.

Intuitively, if it takes a long distance to walk from vertex u
to v over a graph, it is very likely that the two vertexes are
not closely related and there should be no link/edge between
them; in contrast, if the path between them is short over the
graph, it is likely that they are close to each other and there
may be a link between them.

Graph neural networks (GNNs) receive much attention for
graph related problems (Hamilton et al., 2017; Kipf &
Welling, 2017; Veličković et al., 2018) recently. Previous
methods based on GNNs do not explicitly take the distance
information between vertices into consideration. In this
work, we propose to combine distance information with
GNNs and propose a new method, distance-enhanced GNN
for drug-drug interaction (briefly, DDI) and protein-protein-
association (i.e., PPA), that can significantly improve the
performance.

The technical challenge of combining distance information
with GNNs is that in training we need to calculate the dis-
tance of many vertex pairs, which is computational costly
over a large graph (e.g., with millions of nodes). To improve
efficiency, we propose an anchor-based distance. Specifi-
cally, we first randomly select KA vertices from the node
set and denote them as anchor vertices. Then we calculate
the shortest path starting from these anchor vertices to any
vertices. After that, we use the average of the distances
between the two vertices and each anchor vertex as an esti-
mation. Compared to the shortest path, calculating anchor
distances requires O(KA(V + E)) time complexity only,
where KA is the number of anchor vertices.

After obtaining the distances, they are fused with standard
GNN (Hamilton et al., 2017; Veličković et al., 2018; Kipf &
Welling, 2017). Specifically, the GNN modules first output
a representation of the graph, which is then concatenated
with the obtained distances as an enriched representation
and processed by the classifier for the eventual decision.
To further increase the efficiency, we introduce a distance
sampler for distances of negative edges, by which we do not

1In this work, “link” and “edge” are used alternatively, which
both represent the connection between two nodes.
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need to obtain all distances of negative edges in advance.
We conduct experiments on three link prediction tasks on
the OGB-DDI dataset (Hu et al., 2020).

2. Background
In this section, we first define the notations and the math-
ematical problem definition of link prediction. Then we
introduce the background of GNN, followed by using GNN
for link prediction. We focus on the the undirected graph in
this work.

Notations and problem definition: Let G = (V, E) denote
a graph, where V and E are the collections of vertices and
edges respectively. Each edge e ∈ E can be equivalently
represented as a vertex pair (ue, ve), where ue, ve ∈ V and
the vertices of edge e. Let N (u) denote the neighbors of
vertex u, which is {v ∈ G|(u, v) ∈ E}.

E is split into training, validation and test sets, which are
denoted as Etrain, Evalid and Etest respectively. For ease of
reference, we name the edges in E positive edges. To train
an edge predictor and evaluate its performance, we also
need some negative edges, which corresponds to the vertex
pairs without edges, i.e., Ē = A\E , A = {(u, v)|u, v ∈ V}.
For the validation and test sets, they are made up of “real”
negative edges, which are verified by experts to ensure there
are no edges between them. For training set, the negative
edges are randomly sampled. That is, the negative edges in
the training set could be the positive edges in validation and
test sets.

Brief introduction of GNN: GNN is a type of neural net-
work defined over graphs. Usually, an GNN model can
output the representations of vertices and edges in a graph.
A core module of GNN is about information aggregation.
Let hlu denote the hidden representation of vertex u at the
l-th layer of an GNN model, u ∈ V . Generally, hlu can be
obtained as follows:

hlu = φ
(
hl−1u , ψ({hl−1v |v ∈ N (u)})

)
, (1)

where ψ is a permutation invariant function that can ag-
gregate the information from the neighborhood, and φ can
map the information from the bottom layer to the top layer.
ψ can be implemented as a vanilla feed-forward (i.e., the
MLP) layer (Kipf & Welling, 2017; Hamilton et al., 2017),
attention layer (Veličković et al., 2018), gated convolutional
layer (Bresson & Laurent, 2017), etc. φ is usually imple-
mented as an MLP layer with non-linear activation.

Link Prediction To predict whether a link exists between
node u and v, we first merge the representations of vertices
of u and v into an edge representation. Let hu and hv
denote the output of the last layer of the GNN model (i.e,
for an L-layer GNN module, hu and hv are the hLu and hLv
respectively in equation 1) Following (Hu et al., 2020), the

edge presentation hu,v is obtained as follows:

h(0)u,v = hu � hv;

h(k)u,v = ReLU(Wkh
(k−1)
u,v + bk), k ∈ {1, 2, · · · ,K − 1};

h(K)
u,v = Wkh

(K−1)
u,v + bK , hu,v = h(K)

u,v .
(2)

where � is element-wise product, the W ’s and b’s are learn-
able parameters, hu,v ∈ Rd0 , and d0 and K are hyperpa-
rameters. That is, the vertex representations are processed
by K MLP layers with ReLU activation, and we eventually
get a d0-dimension representation hu,v .

3. Our Method
Network Architecture: The overall architecture is shown
in Figure 1. For the input graph (V, Etrain), we use the stan-
dard GNN network (denoted as GNN), which could be GCN,
GAT, GraphSage, to extract features of each vertex follow-
ing equation 1. Then we can obtain the representations of
edges by equation 2.

Figure 1. Model architecture. The task is to predict whether there
is a link between the green vertex and the red vertex. We use GNN
to extract the vertex representations and merge them as an edge
feature. We then obtain the features about distances (e.g., shortest
path, anchor-based distance, etc). The edge features and distances
features are fused for link prediction.

The distance information is represented by a d1-dimension
vector dist, where each element represents a specific dis-
tance (e.g., shortest path, anchor-based distance, etc). We
concatenate hu,v and dist to get a d0 + d1 representation
h̃u,v = concat(hu,v,distu,v) with distance information
explicitly incorporated. h̃u,v will be eventually processed
by a binary classifier ϕf : Rd0+d1 7→ [0, 1] to determine
whether there exists an edge between u and v.

Anchor-based distance We propose an efficient distance
metrics, anchor-based distance, for our method. We ran-
domly pick KA nodes a1, a2, · · · aKA

as anchor vertices.
For each anchor point ai, we use breadth-first search to cal-
culate the shortest path from ai to all non anchor points in
the graph. The anchor-based distance between node u and
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node v is defined as follows:

distau,v =
1

KA

KA∑
i=1

dist(u, ai) + dist(ai, v). (3)

The time complexity of obtaining anchor-based distances is
O(KA|E|).

Training strategy: During training time, all edges in
A\Etrain could be negative edges. Usually in edge pre-
diction tasks, |Etrain| � |A| (Li et al., 2020). Therefore,
it is extremely cost to calculate the distances for all pos-
sible negative edges. Alternatively, we use a negative
edge sampler to model the distance. When a negative
edge (u, v) comes, the distance is uniformly sampled from
D = {distu,v|(u, v) ∈ Ētrain}. distu,v can be any kind of
distance, e.g., short-path distance, anchor-based distance.

The training strategy is shown in Algorithm 1. First, we
generate M negative edges2 and build Ētrain for negative
distance sampling. Next, we calculate distances for all
positive and negative edges (u, v) ∈ Etrain ∪ Ētrain. The
distances of negative edges are put in a list D.

Algorithm 1 Training Strategy.
Input: Vertices V , positive edges in the training set Etrain.
Randomly sample |Etrain| negative edges from A\Etrain
and denote them as Ētrain.
Calculate the distances distu,v for any (u, v) ∈ Etrain ∪
Ētrain; specifically, define D = {distu,v|(u, v) ∈ Ētrain}.
while not convergence do

Calculate the vertex representations: {hu}u∈V =
GNN(V, Etrain).
Sample a batch of positive edges B+ from Etrain; ran-
domly generate |B+| negative edges and denote them
as B−; for each edge (u−, v−) ∈ B−, distu−,v− is
uniformed sampled from D.
Calculate the edge features hu,v ∀(u, v) ∈ Etrain∪Ētrain
by Eqn.(2).
Update the models by minimizing

− 1

|B+|
∑

(u,v)∈B+

log(ϕf (concat(hu,v, distu,v)))

− 1

|B−|
∑

(u−,v−)∈B−

log(1− ϕf (concat(hu−,v− , distu−,v−))).

(4)
end while
Return the well-trained GNN and ϕf .

We will keep training until convergence. At each iteration,
we first calculate the vertex representation of V . After that,
we sample a minibatch of positive edges B+ from Etrain and

2https://pytorch-geometric.readthedocs.
io/en/latest/_modules/torch_geometric/
utils/negative_sampling.html

a minibatch of negative edges B− with equal size. Note that
B− does not need to be a subset of the Ētrain and could be
sampled online. The distance of positive node are obtained
in advance, while the distance of node pairs (u, v) ∈ Ētrain
are randomly sampled from D.

We obtain the representation about vertex u and v by Eqn.(2)
and the incorporate the distance information distu,v . We use
Eqn.(4) to update the models.

4. Experiments
4.1. Settings

Datasets: We conduct experiments on the DDI and PPA
datasets from the OGB benchmark (Hu et al., 2020). DDI is
a dataset about predicting drug-durg interactions. Each ver-
tex represents a drug. The edge represents the interactions
between drugs and and can be interpreted as a phenomenon
where the joint effect of taking the two drugs together is
considerably different from the expected effect in which
drugs act independently of each other. In PPA, each vertex
represents a protein, and the edge indicates the biologically
meaningful associations between proteins. The training,
validation and test sets have been officially released by (Hu
et al., 2020). More detailed statistics is at Table 1.

Configuration: The detailed settings of the experiments
(including the network architectures, the number of layers,
hidden dimension, training epoch, initial learning rate, the
number of random trees, the number of anchor points and
the number of independent runs) are summarized in Table 2.

Evaluation: The evaluation metrics for DDI and PPA are
Hits@20 and Hits@100. Given a set of positive edges
{e+,i}N+

i=1 and negative edges {e−,j}N−
j=1, let p+,i and p−,j

denote the probability that the i-th positive edge and j-th
negative as categorized as positive edges. Define the τ -th
largest element in {p−,j}Ni

j=1 as pτ . The Hits@τ (τ is an
integer) is defined as follows:

Hits@τ =

∑N+

i=1 I(p+,i ≥ pτ )

N+
, (5)

where I is the indicator function. The script to calculate the
Hits@τ is officially provided by (Hu et al., 2020).

Name Nodes Edges Metric

OGBL-DDI 4267 1334889 Hits@20
OGBL-PPA 576289 30326273 Hits@100

Table 1. Statistics of OGB datasets (Hu et al., 2020).

https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/utils/negative_sampling.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/utils/negative_sampling.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/utils/negative_sampling.html
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DDI PPA

network GraphSage GCN
#layer 2 3
#hidden 500 200
epoch 500 200
lrate 0.003 0.002
dropout 0.3 0.05
KA 1000 2000
#runs 30 5

embedding param 2184704 115257800
network param 1575430 1132012
total param 3760134 116389812

Table 2. Detailed settings of the experiments. From top to bottom,
the rows represent the network architectures, the number of layers,
hidden dimension, training epoch, initial learning rate and the
number of anchor points.

4.2. Results

The results of DDI are reported in Table 3. We have the
following observations:

1. After incorporating one distance into GNN, (i.e., the
shortest path, Katz index, anchor-based distance), the
baseline can be significantly improvement compared
with the standard GraphSage baseline.

2. Using shortest path is not the best choice for DDI,
either for computation efficiency and the performance.
The reason is that DDI is a relatively dense graph, and
the shortest paths cannot distinguish the positive and
negative edges significantly.

Algorithm Test Hits@20

GraphSage 79.32± 5.42
+ (S) 80.92± 5.92
+ (K) 81.24± 5.23
+ (A) 82.39± 4.37

Table 3. Results of DDI. Let (S), (K) and (A) denote the shortest
distance, Katz index (with β = 0.03) and anchor-based distance
respectively.

The results of PPA can be found in Table 4. With anchor-
based distance, the baseline can be boosted from 48.23 to
49.58, which demonstrates the effectiveness of our method.

5. Related Work
There are some metric based methods for link prediction
with the intuition that the distances of two related nodes
should be short. The metrics include Jaccard Index (Jaccard,

Algorithm Validation Test

GCN 50.71± 0.77 48.23± 2.24
+ (S) 51.69± 0.18 48.83± 1.22
+ (A) 50.92± 1.29 49.58± 1.45

Table 4. Results of PPA. Let (S) and (A) denote the shortest dis-
tance and anchor-based distance respectively.

1901), the shortest path (Floyd, 1969), random walk (PEAR-
SON & KARL, 1905), Katz Index (Katz, 1953), sim-
Rank (Jeh & Widom, 2002), pageRank (Brin & Page, 1998),
etc. (Hasan & A, 2005; Liben-Nowell & Kleinberg, 2007)
showed that local similarity metrics and global similarity
metrics have significant effect on the link prediction task in
social network.

In additional to the above manually-designed metrics, the
features of nearby subgraphs can be obtained by neural net-
works. (Zhang & Chen, 2017) proposed Weisfeiler-Lehman
Neural Machine (WLNM), which extracts enclosing sub-
graphs around edges as training data. (Zhang & Chen, 2018)
proposed SEAL, a new link prediction framework based on
GNN. SEAL learns “heuristic” suits the current network
automatically by using a function mapping the sub-graph
patterns to link existence. LGLP (Cai et al., 2020) improved
SEAL by refactoring the graph to ensure the number of
nodes and removing the pooling operation. PLACN (Ra-
gunathan et al., 2020) incorporates information like com-
mon neighbors of nodes on target edge and a combination
of heuristic features through a deep learning method like
SEAL. (You et al., 2019) propose Position-aware Graph
Neural Networks (P-GNNs). In P-GNNs, each vertex is
attached an additional location feature, which is obtained by
the distance from several anchor vertices in the graph. (Li
et al., 2020) theoretically studies the distance encoding of
GNN. (Cao et al., 2019) used local structural information
in additional to the graph embedding, and SEMAC (Cao
et al., 2018) takes the subgraphs with different depths into
consideration.

6. Conclusions
In this paper, we propose a new method, distance-enhanced
GNN, that explicitly incorporates distance into graph neural
networks. Experiments on DDI and PPA demonstrate the
effectiveness of our method. For future work, we will study
more ways to leverage the distance information.
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