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Recent advances in CRISPR/Cas9-based genome engineer-
ing and single-cell sequencing assays have enabled the si-
multaneous measurement of lineage information and tran-
scriptomic state at the single-cell resolution (Raj et al., 2018;
Chan et al., 2019). Already, these technologies have been
used to study mammalian embryogenesis (Chan et al., 2019)
and cancer metastasis (Quinn et al., 2021), amongst other
applications. In these studies, researchers use phylogenies -
tree structures that describe relationships between observed
cells - to infer transcriptomic determinants of dynamic phy-
logenetic patterns. A key limitation thus far, however, de-
rives from the fact that only the leaves of these trees are
directly observed whereas the internal nodes of the tree
represent unobserved, ancestral states. While rich insights
can be yielded from the relationships between leaves alone,
accurately inferring these ancestral states of a tree would
allow researchers to formulate far more sophisticated “evo-
lutionary” models of biological processes (Wagner & Klein,
2020).

The variational autoencoder (VAE) (Kingma & Welling,
2014) is a powerful framework for fitting flexible generative
models to data in a scalable fashion. In particular, such
tools have been applied in several areas of molecular biol-
ogy (Lopez et al., 2020), including modeling of single-cell
RNA sequencing (scRNA-seq) data. Most of the subse-
quent research focuses on the case where each datapoint
is an independent replicate of the same generative process,
providing better variational distributions or more flexible
models (Kingma et al., 2016; Louizos et al., 2016; Burda
et al., 2016). In this work, we seek to exploit the tree struc-
ture generated from lineage tracing as prior information
about the sample-sample covariance structure. In doing so,

1Department of Electrical Engineering and Computer Sci-
ences, UC Berkeley, USA 2École CentraleSupélec, Gif-sur-
Yvette, France 3Department of Cellular and Molecular Phar-
macology, University of California, San Francisco, USA
4Biological and Medical Informatics Graduate Program, Univer-
sity of California, Berkeley, USA. Correspondence to: Romain
Lopez <romain_lopez@berkeley.edu>, Matthew G. Jones <mat-
tjones315@berkeley.edu>, Nir Yosef <niryosef@berkeley.edu>.

The 2021 ICML Workshop on Computational Biology. Copyright
2021 by the author(s).

we seek to fit a prescribed model that can be used to predict
ancestral expression across the tree in a principled fashion.
Here we introduce TreeVAE, a fully-probabilistic approach
that builds on previous work, such as the time-marginalized
coalescent VAE (Vikram et al., 2019), by tailoring the in-
ference to bespoke observation models for scRNA-seq and
rich phylogenies inferred from CRISPR/Cas9-based lineage
tracing data. After describing our generative model and an
inference procedure for it (Section 1), we compare Tree-
VAE to alternative methods on simulated and real datasets
(Section 2).

1. Tree Variational Auto-encoder (TreeVAE)
1.1. Formal Description of the Generative Model
We assume that we know a phylogeny T = (V,E, b), a
directed rooted tree with vertex set V , edge set E and edge
length function b. We note the weight b(e) of an edge
e = (u, v) as bu,v. The vertex set V is partitioned into L
leaf vertices VL = {1, . . . , L} (a set of cells) and I internal
vertices VI = {L + 1, . . . , L + I} (ancestral cell states) such
that V = VL ∪ VI . Phylogenies may be inferred from single-
cell lineage tracing mutation data using publicly available
methods such as Neighbor Joining (Saitou & Nei, 1987) or
Cassiopeia (Jones et al., 2020).

We introduce a probabilistic model describing the evolu-
tion of latent random variables zv at every vertex v along
the phylogeny T . Those latent variables correspond to a
low-dimensional embedding of cell states, as explored in
previous work (Lopez et al., 2018). Unlike in most ap-
plications of generative models to single-cell data, where
those variables are independently sampled for every cell, we
model correlation between cells with a Gaussian Random
Walk (GRW) on T . For the root node r, we sample from an
isotropic Gaussian distribution:

zr ∼ Normal(0, Id), (1)

where d denotes the dimension of zr. Then, every vertex
v ∈ V ∖ {r}, zv is sampled according to an isotropic Gaus-
sian distribution centered at its parent’s location and with
covariance scaled by the edge length:

zv ∣ zπ(v) ∼ Normal (zπ(v), bv,π(v)Id) , (2)
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Figure 1. The proposed graphical model. Shaded vertices repre-
sent observed random variables. Empty vertices represent latent
random variables. Edges signify conditional dependency.

where π(v) is the unique parent of v in T .

We observe the scRNA-seq measurements x1∶L =
{x1, . . . xL}, as well as the library size (i.e., the number
of gene counts per cell) α1∶L = {α1, . . . αL} at each of the
leaves. We propose to build on an observation model previ-
ously used for single-cell transcriptomics data (Lopez et al.,
2018) whereby for each cell l and for every gene g, the gene
expression xlg is generated as:

xlg ∼ NegativeBinomial(αlρlg, θg), (3)

where ρlg = fg(zl) is the output of a neural network (f has
a softmax output layer for normalization purposes) and θg is
a gene-wise global parameter learned by variational Bayes.

This model assumes that the correlation between cells is
fully-characterized by the GRW as illustrated in Figure 1
and described in the following likelihood decomposition:

pθ(x1∶L ∣ α1∶L) = ∫
L

∏
l=1

pθ(xl ∣ zl, αl)dp(z1∶L). (4)

This model is an extension of the SVAE (Johnson et al.,
2016), and is a particular instance of the TMC-VAE (Vikram
et al., 2019), for which the phylogeny is known a priori. We
refer to those models as TreeVAEs in this manuscript.

1.2. Inference

As with standard VAEs, the marginal likelihood of (4) is
intractable. We therefore develop a variational inference
recipe to (i) learn the parameters θ of the model and (ii) ap-
proximate the posterior distribution p (z1∶L ∣ x1∶L). Because
our model couples a complex non-linear observation model
with a more simple correlation model in latent space (any
marginal distribution for the GRW is tractable), we may
build upon previous work (SVAE and TMC-VAE) to derive
a variational inference recipe.

We introduce a mean-field variational approximation to the
posterior p(z1∶L ∣ x1∶L) which we assume factorizes as:
q̄φ = ∏L

l=1 qφ(zl ∣ xl), and we derive the evidence lower
bound (ELBO):

log pθ(x1∶L) ≥ Eq̄φ [
L

∑
l=1

log
pθ(xl ∣ zl)
qφ(zl ∣ xl)

+ log p(z1∶L)] . (5)

Provided that one can calculate the marginal likelihood
p(z1∶L) of the latent variables over the leaf nodes, and the
gradient of the ELBO with respect to the parameters of the
variational distribution, one may then learn the parameters
of the generative model (θ) and the inference model (φ) via
stochastic gradient ascent on the ELBO (Kingma & Welling,
2014). However, the complexity of naive calculations of
this marginal distribution is cubic in the number of leaves,
and therefore unsuitable. Fortunately, the marginalization
of these latent variables is tractable in linear time, using a
message passing algorithm on the tree (Teh et al., 2008).
Although usually those algorithms are only derived for bifur-
cating trees, we propose here an extension for multifurcating
trees. Below, we derive the marginals for the base case of bi-
furcating trees (a triplet). We describe the general recursive
algorithm in Appendix A.

Triplet example Let (xr, xa, xb) be a triplet of random
variables, following a local Gaussian diffusion model:

xr ∼ Normal(0, Id) (6)
xa ∣ xr ∼ Normal(xr, br,aId) (7)
xb ∣ xr ∼ Normal(xr, br,bId). (8)

We note as φ(⋅ ;µ,σ2) the probability density function of
the multivariate Gaussian distribution with mean µ and
covariance σ2I . Completing the square, we have that
p(xa, xb ∣ xr) identifies as an unnormalized Gaussian den-
sity:

p(xa, xb ∣ xr) = Zφ(xr;µ, ν), (9)

with ν−1 = b−1
r,a + b−1

r,b and µ = ν ( xa
br,a

+ xb
br,b

) , (10)

and a tractable normalization constant Z. The marginal
likelihood p(xa, xb) simply follows from integrating out
the prior p(xr).

1.3. Posterior Predictive Density

Unlike the vanilla VAE, our TreeVAE model explicitly helps
define posterior predictive densities for latent variables zi
and gene expression measurements xi at each internal node
i ∈ VI of the phylogeny. On the latent space, the posterior
predictive is approximated as:

p(zi ∣ x1∶L) ≈ ∫ p(zi ∣ z1∶L)dq̄φ. (11)

Similarly, on the feature space, the posterior predictive is
approximated as:

p(xi ∣ x1∶L) ≈ ∫ pθ(xi ∣ zi)dp(zi ∣ z1∶L)dq̄φ. (12)

All quantities appearing in (11) and (12) are readily avail-
able after training, except for the conditional distribution
p(zi ∣ z1∶L) for which we use another message passing algo-
rithm, that also has linear time complexity (Appendix A).
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2. Performance Benchmarks
To assess the performance of our approach, we evaluate
the accuracy of the posterior densities. This is a sensible
approach, as we seek to correctly estimate the cellular states
at ancestral nodes of the phylogeny. Towards this end, we
report several metrics to evaluate the quality of pθ(zi ∣ x1∶L)
(on latent space), as well as pθ(xi ∣ x1∶L) (on feature space).
Because the ground truth for these densities is generally
intractable, we propose three sets of experiments. First, we
benchmark the quality of our approximate posterior predic-
tive density on a Gaussian process factor analysis model
(Section 2.1), for which the ground truth is tractable. Sec-
ond, we provide a benchmark on a simulated single-cell
RNA sequencing data, using the prior predictive density
as (approximate) ground truth (Section 2.2). Finally, we
explore the application of TreeVAE to real single-cell data
from cancer metastasis (Section 2.3).

For the experiments in Section 2.1 and 2.2, we simulate
ground truth tree topologies using a generalized birth-death
model. A tree is simulated by beginning with a single node.
We use two exponential distributions, parameterized by α
and β, to model the time until a cell divides (i.e., birth of
a new lineage) and the time until a cell dies, respectively.
We repeat the birth-death process until a desired number of
leaves is reached.

Throughout, we compare the imputation accuracy of Tree-
VAE to two baselines. The first one is a naive approach
based on averaging gene expression at all the leaves beneath
an internal node. The second one is based on averaging the
latent space for leaves below an internal node from a fitted
VAE before decoding. Such heuristics have been used in
several scRNA-seq data analysis scenarios (Lotfollahi et al.,
2019). We ran VAE and TreeVAE on a NVIDIA TITAN Xp,
and fitting the data took less than a few minutes for every
dataset.

2.1. Gaussian Process Factor Analysis Simulations

As a first test-bed, we consider a simulation framework
based on the Gaussian process factor analysis model (Yu
et al., 2009), for which posterior predictive densities are
tractable (fully-specified in Appendix B, with derivations for
the ground truth). This model is obtained by using a linear
Gaussian conditional distribution in place of the negative
binomial decoder in (3).We adapt the observation model
of the VAE and the TreeVAE accordingly. Each simulated
dataset is based on a tree with 100 leaves (cells) and 100
genes. All results are averaged across ten simulations.

In this setting, we compare the posterior predictive on the
latent variables pθ(zi ∣ x1∶L) as well as the one on the
features pθ(xi ∣ x1∶L) to their respective ground truth. On
the latent space, we report the mean square error of the

LATENT SPACE FEATURE SPACE
MSE Purity CE r ρ MSE

Average - - - 0.828 0.803 0.768
VAE 2.28 0.372 2,515 0.846 0.821 0.863
TreeVAE 1.89 0.450 281 0.869 0.844 0.541

Table 1. Results on the Gaussian process factor analysis simula-
tions (averaged across ten different simulations).

LATENT SPACE FEATURE SPACE
Purity CE r ρ MSE

Average - - 0.350 0.314 7.53
VAE 0.523 8,481 0.402 0.324 5.81
TreeVAE 0.615 1,577 0.413 0.327 5.80

Table 2. Results on the Gaussian process Poisson Log-normal sim-
ulations (averaged across ten different simulations). MSE is re-
ported on normalized counts.

mean of the posterior predictive pθ(zi ∣ x1∶L) (MSE; lower
is better), the k-nearest neighbors purity (Purity; higher is
better) (Xu et al., 2021) and the cross entropy between the
prior distribution pθ(z1∶L) and the approximate posterior
q̄φ (CE; lower is better). (To note, latent space metrics do
not apply for the average baseline.) On the feature space,
we report the average Pearson correlation for imputation
of ancestral gene expression across all genes (r; higher
is better), as well as the Spearman correlation (ρ; higher
is better), and the mean-square error for gene expression
(MSE; lower is better).

We report the results in Table 1. On latent space, TreeVAE
outperforms the VAE with respect to all three metrics. In
particular, the MSE metric suggests that TreeVAE learned a
more accurate posterior approximation compared to VAE.
Moreover, the k-NN purity and cross entropy metric show
that the latent space inferred by TreeVAE is more reflective
of the phylogeny compared to VAE (as expected). On the
feature space, TreeVAE also outperforms baselines on all
three metrics. Although all the correlation scores are rather
high for all methods in this setting, TreeVAE still provides
a substantial improvement over the naive baselines.

2.2. Gaussian Process Poisson Log-normal Simulations

Although the linear Gaussian system described previously
helps diagnose the effectiveness of our inference procedure,
it remains an unrealistic model for describing scRNA-seq
data. Therefore, we instead use a Poisson Log-normal ob-
servation model as a more realistic simulation framework.
More precisely, in place of the observation model described
in (3), we generate xl as:

yl ∣ zl ∼ Poisson (exp{Wzl + β}) (13)
xl ∣ yl ∼ Binomial (yl, p) , (14)

in which p was adjusted to bring the frequency of zeros
to 80% in the dataset. Each simulated dataset is based on
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Figure 2. Relationship between uncertainty and error in the Gaus-
sian Process Poisson Log-normal simulation experiments with the
TreeVAE model. (a) Variance of posterior predictive density on
latent space for each internal node compared to the depth (Pear-
son’s r = 0.6761). (b) Error and uncertainty of each prediction
(Pearson’s r = −0.6765).

CE ELBO

scVI 21,348 268.43
TreeVAE 3,051 266.09

Table 3. Results on the cancer metastasis data. ELBO denotes the
evidence lower-bound on observed data.

a tree with 500 leaves (cells) and 1000 genes. All results
are averaged across ten simulations. Because the ground
truth distribution for both posterior predictive densities are
not accessible, we slightly modify the evaluation metrics
presented previously. First, we do not report MSE on the
latent space because it cannot be evaluated. Second, because
the gene expression posterior predictive pθ(xi ∣ x1∶L) is no
longer tractable, here we use the prior predictive distribution
pθ(xi) as a proxy for ground truth. We report the results
in Table 2. On the latent space, TreeVAE outperforms the
VAE on both metrics. This emphasizes again that the Tree-
VAE produces representation at internal nodes that are more
reflective of the tree structure. On the feature space, we ob-
serve that the correlation scores are generally low compared
to the previous experiment, likely due to the high level of
noise from binomial sub-sampling. However, even in this
setting we observe similar trends as from our previous exper-
iment: the TreeVAE outperforms both metrics. Finally, we
investigate the relationship between certainty and accuracy
in our TreeVAE model. As expected, our estimates become
more uncertain closer to the root and this in turn affects
model accuracy (Figure 2).

2.3. Analysis of Cancer Metastasis Data

We next assess the performance of the TreeVAE model on
real CRISPR/Cas9 single-cell lineage tracing data. As a
proof of concept, we analyzed a single clone of 603 cells
from a recent dataset that traced the lineages of lung cancer
tumors as they metastasized throughout a mouse (Quinn
et al., 2021). Here, we leverage the tree reconstructed from
CRISPR/Cas9 barcodes with Cassiopeia (Jones et al., 2020)
as used in the original study. Because Cassiopeia does not
explicitly model the edge weights of the phylogeny, we sepa-
rately inferred these based on the assumption of an ultramet-
ric tree. Finally, because a large fraction of genes detected

Figure 3. Behavior of TreeVAE internal node predictions. (a) Vari-
ance of posterior predictive density on latent space for each internal
node. Uncertainty is negatively correlated with depth (Pearson’s
r = −0.60). (b) Predicted expression of CEACAM5 for each in-
ternal node. Color gradient at the leaves indicates observed gene
expression.

by scRNA-seq do not have a strong relationship to the lin-
eage, we only considered the top 100 genes autocorrelated
with the phylogeny, as evaluated by Hotspot (DeTomaso &
Yosef, 2021).

We fit the TreeVAE with the observation model described
in (3). In this experiment, we have limited ground truth be-
cause neither latent variables nor gene expression is known
at the ancestral nodes of the phylogeny. We still propose to
compare to scVI (Lopez et al., 2018), a VAE with identical
observation model as the TreeVAE considered in this experi-
ment. As a first metric, we report the cross-entropy score on
the latent space (CE, as in previous experiments). Then, we
propose a comparison of the evidence lower bound (ELBO)
on observed samples. Although in this experiment we do not
have held-out data because we may only observe one cell
at each leaf of the tree, we expect these numbers to be com-
parable because the same neural architecture, noise models,
and hyperparameters were used for fitting both models. Our
results, reported in Table 3, suggest that TreeVAE better fits
the data and proposes an approximate posterior that is more
reflective of the tree structure.

Finally, we investigate the behavior of TreeVAE’s predic-
tions of ancestral gene expression. As expected, TreeVAE’s
imputations are more certain closer to the observations at
the leaves and becomes more uncertain for nodes closer to
the root (Figure 3a). We next predict the ancestral gene ex-
pression of CEACAM5, an important cell adhesion molecule
that is associated with metastatic invasion (Minami et al.,
2001). We observe a predicted pattern that broadly agrees
with tree structure and observations at the leaves (Figure 3b)
and offers rich hypotheses on the subclonal dynamics of
CEACAM5 expression. Critically, because our Bayesian
model quantifies uncertainty, we can directly evaluate the
stability of a given hypothesis, unlike naive averaging. Over-
all, these results underscore the promise of the TreeVAE
model for gene expression prediction.
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A. Message Passing Algorithms
In the main text of this manuscript, we presented a simple marginalization procedure provided for a triplet of nodes,
based on completing the square. The procedure may be used recursively as part of a well-established message passing
algorithm for computing marginal likelihood of leaf observations in the context of binary trees, and in particular explained
in the TMC-VAE manuscript (Vikram et al., 2019). In this appendix, we present a generic message passing algorithm
for multifurcating trees (Section A.1). In particular, we propose a generalization of the normalizing constant formula
for multifurcating trees, a key contribution for dealing with phylogenetic information inferred from Cassiopeia and other
algorithms that do not necessarily produce binary trees. We then demonstrate how to use this algorithm for computations of
the marginal likelihood of the leaves p(z1∶L) (Section A.2) and for posterior predictive densities p(zi ∣ z1∶L) (Section A.3).

A.1. The base message passing algorithm

Let T = (V,E, b) be a phylogeny with vertex set V , edge set E and edge length function b. We note the weight b(e) of
an edge e = (u, v) as bu,v. Again, the vertex set V is partitioned into L leaf vertices VL = {1, . . . , L} (a set of cells) and I
internal vertices VI = {L + 1, . . . , L + I} (ancestral cell states) such that V = VL ∪ VI . For a node i let I = i1, . . . , in denote
the indices of its n children.

Message passing is defined recursively, starting from a source node s (always an internal node), and requesting messages
from each of its neighbors. We initialize the message of each the leaf l with the following content:

logZl = 0, νl = 0, µl = zl, (15)

where zl is the evidence at leaf l.

Then, we use the following update rules to propagate messages from a set of child nodes (i1, . . . , in) to a parent node i:

ν−1
i =

n

∑
j=1

1

νij + bi,ij
, µi = νi

n

∑
j=1

µij
νij + bi,ij

(16)

and for the normalizing constant:

logZi = −
d(n − 1)

2
log(2π) − d

2
logT − 1

2T

⎛
⎝∑j≠l

⎛
⎝ ∏
k∈(1,...,n)∖(j,l)

(νik + bi,ik)
⎞
⎠
∣∣µij − µil ∣∣2

⎞
⎠

(17)

with T = ∑ni=1 (∏j≠i(νij + bi,ij)).

A.2. Computing marginals

In order to calculate the marginal likelihood of leaf observations p(z1∶L), we run the message passing algorithm using the
root node as the source, and using the leaf observations (z1, . . . , zL) as local evidence. This is described in Vikram et al.
(2019), although our last steps differ from it, as they did not integrate out the prior in their calculations. For this, we compute
the integral of the last message with the prior:

logZ∞ = logZr −
∥µr∥2

2(1 + νr)
− d

2
log 2π(1 + νr), (18)

where r indicates the root. We then calculate the desired marginal distribution as:

log p(z1∶L) = logZ∞ +
L

∑
l=1

logZl. (19)

A.3. Computing posterior predictive densities

In order to calculate the conditional distribution p(zi ∣ z1∶L) for an arbitrary internal node i, we run the message passing
algorithm using the query node i as the source and using the leaf observations (z1, . . . , zL) as local evidence. In contrast
to Vikram et al. (2019), we take into account the prior information during the message passing protocol. To do this, we add
a dummy node attached to the root with null evidence and unit diagonal variance.
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A.4. Implementation and unit tests

We implemented this message passing information in vanilla PyTorch. In order to check our calculations, we have developed
a suite of unit tests for random trees, with ground truth based on the Gaussian conditioning formula.

B. Gaussian Process Factor Analysis Model
In this appendix, we describe the Gaussian process factor analysis model used for simulating data, and define a tractable
ground truth for both posterior predictive densities.

B.1. Full specification of the generative model

Let τ = (E,V, b) be a phylogeny with N nodes. We index the vertex set V = L⋃I by leaves L = {1 . . . L} and internal
nodes I = {L + 1 . . .N}. As for the TreeVAE model, latent variables zv for each vertex v form a multivariate Gaussian
vector:

z1∶N ∼ Normal(0,Σ), (20)

where Σ has for shape Nd ×Nd (the latent space is d-dimensional). For every leaf n, observation xn is generated as:

xn ∣ zn ∼ Normal (Wzn, σ
2Ip) , (21)

with W ∈ Rp×d and σ > 0 (the feature space is p-dimensional).

B.2. Posterior distribution

The posterior distribution p(z1∶L ∣ x1∶L) is tractable via Gaussian conditioning formula. Indeed, it is easy to see that
(z1∶L, x1∶L) is a Gaussian vector:

(z1∶L

x1∶L
) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zL
x1

⋮
xL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zL

Wz1 + σe1

⋮
WzL + σeL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ R(Ld+Lp), (22)

where e1∶L is sampled from a Gaussian isotropic distribution. Consequently, we can characterize the distribution of this
vector by its mean and covariance. The random vector is centered, as z1∶L and e1∶L are both centered. Let us denote the
covariance matrix of (z1∶L, x1∶L) by Λ ∈ R(Ld+Lp)×(Ld+Lp). We decompose Λ with a block structure:

Λ = ( Σz1∶L Λz1∶L,x1∶L

ΛTz1∶L,x1∶L
Λx1∶L

) , (23)

and where each term can be calculated as follows:

Marginalized latent covariance Σz1∶L ∈ R(Ld)×(Ld) is the marginalized covariance Σ of the leaves (computed by
adequately slicing Σ).

Marginalized feature covariance Λx1∶L
∈ R(Lp)×(Lp) such that for all pairs of leaves (i, j), Λi,jx1∶L

∈ Rp×p is the block
encoding correlations between xi and xj :

Λk,lx1∶L
= Cov(xk, xl) = Cov(Wzk + ek,Wzl + el) =WΣk,lW

T + σ2Ip. (24)

Correlation term The matrix Λz1∶L,x1∶L
∈ R(Ld)×(Lp) encodes correlations between z1∶L and x1∶L such that:

Λz1∶L,x1∶L
=
⎛
⎜
⎝

Σ1,1W
T . . . Σ1,LW

T

⋮ ⋱ ⋮
ΣL,1W

T . . . ΣL,LW
T

⎞
⎟
⎠
= {Σk,lW

T }Lk,l=1, (25)
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where the previous result comes from the simple fact that for a pair of leaves (k, l), we have:

Cov(zk, xl) = E [zk(Wzl + el)T ] = Σk,lW
T , (26)

where Σk,l is the marginalized Σ corresponding to the correlations between variables zk and zl.

Finally, we may use the Gaussian conditioning formulas to derive the posterior distribution p(z1∶L ∣ x1∶L):

E [z1∶L∣x1∶L] = Λz1∶L,x1∶L
(Λ−1

x1∶L
)x1∶L (27)

Var [z1∶L∣x1∶L] = Σz1∶L −Λz1∶L,x1∶L
(Λ−1

x1∶L
)ΛTz1∶L,x1∶L

(28)

B.3. Posterior predictive densities at internal nodes

In all our imputation experiments, we are interested in the posterior predictive density of the internal nodes. For both
quantities, we integrate over a suitable set of latent variables. On latent space, we utilize the following decomposition:

p(zi ∣ x1∶L) = ∫ p(zi ∣ z1∶L)dp(z1∶L ∣ x1∶L), (29)

where p(zi ∣ z1 . . . zL) may be computed exactly using the message passing algorithm (as in Section A.3) for any internal
node i. On feature space, we similarly proceed and integrate out latent variables:

p(xi ∣ x1∶L) = ∫ p(xi ∣ zi)dp(zi ∣ x1∶L). (30)

Therefore, we can efficiently compute the posterior predictive of any internal node through MCMC sampling in two steps.
First, we sample from the posterior predictive distribution on latent space at node i: p(zi ∣ x1∶L). Then, we generate xi ∣ zi
with the generative model specified in Section B.1.


