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Abstract
Convolutional neural networks (CNNs) trained
to predict regulatory functions from genomic se-
quence often learn partial or distributed represen-
tations of sequence motifs across many first-layer
filters, making it challenging to interpret the bi-
ological relevance of these models’ learned fea-
tures. Here we present Genomic Representations
with Information Maximization (GRIM), an unsu-
pervised learning method based on the Infomax
principle that enables more comprehensive iden-
tification of whole sequence motifs learned by
CNNs. By performing systematic experiments,
we empirically demonstrate that GRIM is able to
discover motifs in genomic sequences in situa-
tions where supervised learning struggles.

1. Introduction
Convolutional neural networks (CNNs) have shown strong
successes in taking DNA sequences as input and predicting
regulatory functions, such as transcription factor binding or
mRNA abundance (Kelley et al., 2018; Tasaki et al., 2020;
Avsec et al., 2021). To understand the features learned by
a CNN, one can visualize first-layer convolutional filters
(Alipanahi et al., 2015; Kelley et al., 2016), which has been
shown to correspond to biologically relevant motifs, or use
attribution methods (Simonyan et al., 2013; Shrikumar et al.,
2018). Despite the state-of-the-art performance of deep
learning, there is no guarantee that resulting visualizations
or attribution scores will reveal biologically meaningful
features (Koo & Eddy, 2019; Koo & Ploenzke, 2021).

Indeed, CNNs trained with standard supervised learning
tend to learn fragile representations that may, on average,
be correlated with training labels but that do not reflect the
underlying data generating processes (Ilyas et al., 2019).
While architecture design principles can encourage CNNs
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to learn more robust features (Koo & Eddy, 2019; Koo &
Ploenzke, 2021), supervised deep learning suffers from two
major shortcomings: first, it learns discriminative features
that are predictive of class labels but may fail to capture all
relevant features; and second, it may learn only a subset of
strongly discriminative features and miss weakly correlated
features that could still be biologically important.

Here we present Genomic Representations with Information
Maximization (GRIM), an unsupervised learning method
based on the Infomax principle that enables more compre-
hensive learning and identification of whole sequence motif
representations by CNNs. We demonstrate that GRIM is
able to discover motifs in genomic sequences in situations
where supervised learning methods struggle.

2. Background
In contrast with supervised learning, unsupervised learning
methods are not given access to labels, and thus can avoid
some of the shortcuts and pitfalls that plague supervised
learning. While there are many types of unsupervised and
semi-supervised learning methods (Anand & Huang, 2018;
Sinai et al., 2017; Lu et al., 2020), we have chosen to employ
a method based on the information maximization (InfoMax)
principle (Linsker, 1988). Under the Infomax principle,
the goal of learning is to find an encoding g (constrained
by a function class G) of input X such that the Shannon
mutual information (MI) between the pair X and g(X) is
maximized; specifically, this is

max
g∈G

I (X; g (X)) .

However, MI is a notoriously difficult quantity to estimate
from data. Thus, in practice, most methods rely on maxi-
mizing a lower bound, which is easier to compute (Becker
& Hinton, 1992), usually given according to:

max
g1∈G1,g2∈G2

Iest

(
g1

(
X(1)

)
; g2

(
X(2)

))
where Iest(X;Y ) is a sample-based estimator, g1 and g2 are
different encoders that take as input X(1) and X(2), two
different views of the data X (Tschannen et al., 2019). For
example, in computer vision, X(1) and X(2) could be the
top and bottom halves of an image.
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Deep InfoMax (Hjelm et al., 2018) is a method that learns
representations of image data by maximizing a lower bound
to the MI; the lower bound used is of the form:
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where i indexes different views of the data, Cψ and Eψ are
encoders, D is a discriminator, P and P̃ are distributions
of the data x ∈ X and negative examples x′ ∈ X ′ respec-
tively, and sp(z) = log(1 + ez) is the softplus function.
The encoder Cψ(x) gives a “local” encoding of the data X ,
while the encoder Eψ(x) gives a “global” encoding of the
data; the discriminator D is a function that takes as input
pairs of local and global encodings (Cψ (x) , Eψ (x)) of the
data and outputs a score representing a level of concordance
between the two types of encodings. The Deep InfoMax
discriminator projects each encoding Cψ(x) and Eψ(x) to
a higher (and common) dimensionality space and then cal-
culates an inner product; the intent of this procedure is to
measure similarity. Deep InfoMax then uses the discrimi-
nator scores are then used to calculate a lower bound to the
MI according to equation (1).

3. Genomic Representations with Information
Maximization (GRIM)

GRIM adapts the Deep InfoMax method, which was de-
signed for representation learning of images, for genomic
sequences by using a redesigned encoder and discrimina-
tor architectures as well as a modified negative example
selection process. Since we are often interested in learn-
ing motifs in regulatory genomics, we use each positional
vector of the first convolutional layer feature map as the
“local” encodings; further processing the local encodings
with a deep CNN yields the “global” encodings. The quan-
tity maximized by GRIM represents MI between these local
views and the global view of the entire sequence. Intuitively,
this should provide a way to learn informative local pat-
terns, such as motifs, that inform properties—such as the
regulatory activity—of the whole sequence overall.

Encoder. The encoder Eψ(x) = (Fψ ◦ Cψ)(x) is a com-
posite function, parameterized1 by ψ, that takes as input
a one-hot encoded genomic sequence x of length L and
outputs a local encoding c = Cψ(x) and global encoding
of the whole sequence h = Eψ(x). The local encoding

1For convenience, we here notate the parameters of both the
local encoding C and the further encoding F with ψ, as is done in
the Deep InfoMax method; however, encoders C and F do not ac-
tually share any parameters or even the same form or architecture.

Figure 1. GRIM workflow. Note that box sizes do not necessarily
correspond to dimensions of the quantities represented.

for each position is given by different convolutional scans,
and thus the i-th position is a vector of size d, where d
is the number of first layer filters. The global encoding
takes the local encoding as input and processes it with addi-
tional convolutional and fully-connected layers to generate
h = Eψ(x) = Fψ (Cψ(x)) (h ∈ Rp, where p is the global
encoding dimension). The intuition behind these encodings
Cψ and Eψ is as follows: the local encoding c looks at
smaller, overlapping windows (i) of the sequence x and
matches the convolutional filters to each of these small win-
dows, and the global encoding h summarizes the whole
sequence x into a single vector.

Discriminator. In contrast to Deep InfoMax, our GRIM
discriminator is designed using prior knowledge of biolog-
ical sequence motifs and motif dependencies in genomic
sequences. Ideally we want the encoder to learn patterns of
motifs in the first convolutional layer (Cψ). Since the deeper
layers of Fψ largely maintain spatial information of motif
scans but across a much wider receptive field, for a given
sequence x we can calculate a direct outer tensor product
(i.e., Kronecker product) of the global encoding with the
local encodings. This tensor product calculates a measure
of similarity between the local features at each position i of
the feature maps of c with the global features h. We then
perform a global max pooling over the entire feature map
(i.e., position-wise and depth-wise), according to:

D
(
c(i), h

)
= max

j,k

(
c(i) ⊗ h

)
j,k

(2)

where (j.k) indexes the outer product tensor between local
and global encodings.
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The intuition behind the form of the GRIM discriminator
is that the score of a correctly matched pair of encodings
(c, h) from the same input datum x should be higher than
the score of a mismatched pair of encodings (c′, h) where
the local representation c′ comes from a negative example
x′ while the global representation h comes from the actual
datum x ∈ X if the local encoder Cψ—which generates
the local features c—learns robust motif representation in
its convolutional filters. If the negative example sequences
X ′ contained the same motifs as the actual sequences X ,
then the global representations would not be sufficient to
discriminate matched and mismatched (local, global) pairs.

MI estimation. The Deep InfoMax MI estimator re-
lies on discriminator scores D

(
Cψ
(
x(i)
)
, Eψ (x)

)
and

D
(
Cψ
(
x′(i)

)
, Eψ (x)

)
; the former is the discriminator

score of a matched set of global representation Eψ (x) and
local representation Cψ

(
x(i)
)

from the same sequence x,
while the latter is the discriminator score of a mismatched
set of global representation Eψ (x) from the sequence x
and local representation Cψ

(
x′(i)

)
from a negative example

sequence x′. For GRIM, we choose the negative example
x′ to be a dinucleotide shuffled version of the sequence x.

MI between the genomic sequencesX and a local viewX(i)

of the same sequences is estimated using the form of the MI
estimator from Deep InfoMax (Eq. (1)), where x(i) is a con-
volutional patch i of sequence x (x ∈ X), x′ is a negative
example, which we choose to be a dinucleotide shuffled ver-
sion of x. Note also that by the Data Processing Inequality
(Cover & Thomas, 2012), the MI I

(
X(i);Eψ(X)

)
is itself

a lower bound on the MI I
(
X(i);X

)
.

To take into account the MI between the whole genomic
sequencesX and all local subsequence patchesX(i), GRIM
calculates the MI estimate Îψ

(
X(i);Eψ(X)

)
for each local

subsequence location i and sums them together to form its
loss function LGRIM. Formally, this is

LGRIM =

L∑
i=1

Îψ
(
X(i);Eψ(X)

)
. (3)

This corresponds to the ”local-only” objective used in the
Deep InfoMax method. Maximizing LGRIM leads to the opti-
mal parametrization of the encoders, which can be examined
to understand the representations learned by GRIM.

4. Experimental Overview
Task 1. This task represents a simplified version of a multi-
task classification of TF binding sites. Briefly, 25,000 se-
quences (L = 200) were embedded with 3-5 known motifs
(Mathelier et al., 2016), sampled randomly from a pool of 11
motifs—CEBPB, FOSL1, Gabpa, MAFK, MAX, MEF2A,
NFYB, SP1, SRF, STAT1, and YY1. Positions were chosen

such that each motif has a buffer of at least one nucleotide
from other motifs and the ends of the sequence. A corre-
sponding label vector of length 11, one for each unique TF,
was generated for each sequence (with 1 for embedded and
0 otherwise). The sequences were then randomly split into
a train, validation, and test set according to the fractions 0.7,
0.1, and 0.2, respectively.

Task 2. This task represents a single-task classification
with a plausible biological scenario where a single, dom-
inant motif is sufficient to discriminate a class label but
other sequence motifs are also weakly correlated with the
class label. Briefly, positive class sequences were embed-
ded with the SRF motif and 1-3 other known motifs from a
pool of 5 known motifs—namely CEBPB, FOSL1, MAFK,
MAX, and SP1—sampled with replacement. The negative
class sequences are dinucleotide shuffled versions of the
positive class sequences. A total of N = 25,000 such syn-
thetic sequences and their associated labels were generated;
the sequences were then randomly split into a train (0.7),
validation (0.1), and test set (0.2).

Models. The models used in this study have similar archi-
tectures as (Koo & Eddy, 2019), namely CNN-S, where S
is the first max pooling size and d first layer filters:

1. input (one-hot encoded DNA sequence x, length L)
2. convolution (d filters, size 19)
3. max pool (size S)
4. convolution (128 filters, size 5)
5. max pool (size bL/(2S)c)
6. fully-connected layer (512 units)
7. fully-connected output layer (number of labels)

Batch normalization (Ioffe & Szegedy, 2015) was applied to
each hidden layer prior to ReLU activations, with the excep-
tion of GRIM models. Dropout (Srivastava et al., 2014) was
applied after each max pooling layer with rate 0.1 and after
the fully-connected hidden layer with 0.5. In the context
of the GRIM encoder (see Sec. 3), layers 2-3 constitute
the first local encoding (Cψ) and layers 4-7 constitute the
further encoding (Fψ). All models were trained to minimize
their respective loss functions (binary cross-entropy for su-
pervised models; loss function in Eq. (3) for GRIM models)
for 250 epochs using Adam with default settings (Kingma
& Ba, 2014).

Filter evaluation. We employed activation-based align-
ments to visualize first-layer convolutional filters (Koo &
Eddy, 2019). Tomtom, a motif comparison search tool
(Gupta et al., 2007), was used to determine statistically
significant matches between the filters and the JASPAR
database (Mathelier et al., 2016).
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5. Results
GRIM captures known motif representations. To test
the representation learning capabilities of GRIM, we com-
pared both GRIM using CNN-4 as an encoder and a super-
vised CNN-4 on the Task 1 dataset (see Section 4). Both
models were trained with d = 128 first-layer filters to pro-
vide the models with ample opportunity to capture relevant
motifs. We then compared the first-layer filter represen-
tations for each model. Since the ground truth motifs are
available for our synthetic datasets, we can then test whether
the respective models have indeed captured relevant motifs.

Evidently, GRIM outperforms the supervised CNN-4 model
both in terms of the number of ground truth motifs it is able
to learn as well as the number of first-layer convolutional
filters that actually represent—i.e., statistically significant
match with—a relevant known motif (Table 1). Despite us-
ing similar architectures, the overall representations learned
by GRIM are more robust and identifiable compared to
the same CNN-4 model trained with standard supervised
learning, even without access to the class labels.

Table 1. Motif analysis on Task 1. True positive rate of filter
matches to the 11 ground truth motifs (TPR) and false positive rate
of filter matches to other motifs in JASPAR (FPR). Values shown
are mean ± standard deviation for 10 independent trials.

MODEL TPR FPR

GRIM 0.929 ± 0.028 0.021 ± 0.016
CNN-4 0.263 ± 0.029 0.274 ± 0.036

GRIM learns sequence representations not identifiable
using supervised deep learning. To illustrate another is-
sue with supervised learning—that supervised models can
learn only a subset of patterns when the task involves
strong discriminative features coupled with weakly corre-
lated features—we trained both GRIM using a CNN-25
architecture as an encoder and a supervised CNN-25 model
on Task 2 data (see Section 4), which consists of one dis-
criminative motif (SRF) and five other motifs that have a
weaker connection to positive labels. Unlike CNN-4, CNN-
25 is specifically designed to learn full motif representations
(Koo & Eddy, 2019): when a supervised CNN-25 is trained
on the Task 1 dataset, the model learns all relevant motifs
and nearly all of the first-layer convolutional filters signifi-
cantly match relevant motif representations.

By comparing the representations learned in first-layer filters
of GRIM and a supervised CNN-25 both trained on Task 2
data (Table 2), each with d = 64 first-layer convolutional
filters, we find supervised CNN-25 is unable to learn all
of the relevant known motifs. Despite CNN-25’s strong
inductive bias to learn whole motif representations, it fails to
capture all of the weakly correlated motifs, focusing solely
on the stronger, non-variable SRF pattern. This phenomenon

Table 2. Motif analysis on Task 2. True positive rate of filter
matches to the 6 ground truth motifs (TPR) and false positive
rate of filter matches to other motifs in JASPAR (FPR). Values
shown are mean ± standard deviation for 10 independent trials.

MODEL TPR FPR

GRIM 0.913 ± 0.038 0.016 ± 0.013
CNN-25 0.383 ± 0.041 0.173 ± 0.034

is inherent to the paradigm of supervised learning: once the
supervised model learns to discriminate sequences (positive
class vs. negative class) by learning the discriminative SRF
motif, then it has achieved its objective—that is, minimized
its loss. Applying such a model to real biological data, such
as the prediction of chromatin accessibility sites, where
many TF binding sites reside, this shortcut could then lead
to an incomplete picture of the underlying mechanisms of
the biology. Strikingly, GRIM is able to reliably detect all
of the embedded motifs, including the discriminative SRF
motif as well as the five other weakly correlated motifs.

6. Discussion
Deep learning models tend to learn distributed represen-
tations of sequence motifs that are not necessarily human
interpretable. Moreover, training deep models with super-
vised learning may not be amenable to detecting the full
range of biologically important motifs. To resolve these
issues, we have introduced GRIM, an unsupervised learning
method based on the InfoMax principle. We showed that
GRIM is a powerful approach to learn interpretable repre-
sentations of sequence motifs in easy to access first-layer
filters. We have also shown that GRIM is able to learn rep-
resentations that are difficult to capture within a supervised
learning paradigm.

Although we limit this study to the quality of the local encod-
ings c of GRIM, our preliminary work, in addition to others
in unsupervised representation learning, have shown that
downstream prediction tasks trained on the global encod-
ings generally fall short of the performance of gold-standard
supervised models. Thus, the local representations learned
by GRIM may be of greater use to enhance the performance
of supervised learning models via in transfer learning.

Another challenge that arises in learning genomic sequence
features with GRIM—and, indeed, in representation learn-
ing of genomic features in general—is that first-layer convo-
lutional filters often learn motifs well, but a large degree of
redundancy in representations is often found. In practice, a
large number of filters is required for good performance and
is thus unavoidable with our current limited strategies for
initialization. Thus, reducing the effective dimensionality
of the learned first-layer representations could make GRIM
more human interpretable.
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