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Abstract
Bayesian optimization, which uses a probabilis-
tic surrogate for an expensive black-box function,
provides a framework for protein design that re-
quires a small amount of labeled data. In this
paper, we compare three approaches to construct-
ing surrogate models for protein design on syn-
thetic benchmarks. We find that neural network
ensembles trained directly on primary sequences
outperform string kernel Gaussian processes and
models built on pre-trained embeddings. We show
that this superior performance is likely due to
improved robustness on out-of-distribution data.
Transferring these insights into practice, we ap-
ply our approach to optimizing the Stokes shift
of green fluorescent protein, discovering and syn-
thesizing novel variants with improved functional
properties.

1. Introduction
Biological sequence design is a problem of clear signifi-
cance and widespread application – for example, in engi-
neering of vaccines (Yang et al., 2021; Malone et al., 2020).
Recent advances in synthetic biology (Ran et al., 2013) have
drastically accelerated the rate at which novel protein and
DNA sequences can be produced and characterized, but the
associated search spaces are still unfathomably large (e.g.
20300, the number of proteins that are 300 residues long),
necessitating learning-based approaches to the generation
and prioritization of candidate sequences (Yang et al., 2019;
Sinai and Kelsic, 2020; Wittmann et al., 2021).

Bayesian optimization (BO) is a general procedure for opti-
mizing expensive black-box objectives (like the outcome of
synthesizing a protein) by constructing a probabilistic surro-
gate of the objective. BO involves many design decisions,
including the choice of surrogate model class and the hy-
perparameter selection that entails. Despite extensive work
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on the sequence design problem from both the biological
(Saito et al., 2018; Yang et al., 2019; Biswas et al., 2020;
Shin et al., 2021) and machine learning (Angermueller et al.,
2020) communities, even the basic step of evaluating pos-
sible algorithmic design choices on tasks representative of
the sequence design problem is surprisingly difficult. For
example, evaluating potential surrogate models on their abil-
ity to predict some target feature on a static dataset will not
capture how resilient the models are to distribution shift. Be-
cause of the expense of synthesizing sequences, it is vitally
important that rigorous evaluation procedures are used to
validate algorithmic design choices.

In this work we demonstrate how such evaluation proce-
dures can be constructed by comparing several different
potential surrogate models on a range of simulated design
tasks. We also present promising results using our best sur-
rogate to optimize a new target feature of green fluorescent
protein (GFP) in a wet lab. This work can serve both as a
blueprint for validating new models and algorithms, and as
a case study in collaboration between ML and biomedical
researchers.

2. Preliminaries
Design task We consider optimization of a fitness func-
tion f : X 7→ R where X is the set of all strings up to length
m from the alphabet Σ. In the design task we begin with a
dataset D = (Xtrain,ytrain) of size n, where Xtrain ⊂ X
and y = f(x) + ε, ε ∼ N (0, σ2). In each phase of opti-
mization we select k new points Xquery ⊂ X at which to
query f . After observing yquery we obtain a new dataset
D′ = D ∪ (Xquery,yquery), and the process is repeated.
The goal is to find x∗ = argmaxx∈X f(x).

Bayesian optimization BO uses a probabilistic surrogate
of the objective to define an acquisition function a : X 7→ R.
The acquisition function is used to select the most promising
candidates to query the objective function,

xquery = argmax
x∈X

a(x)

The acquisition function manages the explore-exploit trade-
off by preferring sequences with high predicted value that
also provide the surrogate new information.
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Gaussian processes Gaussian process (GP) regression
models are often favored as surrogate models for BO be-
cause they precisely quantify uncertainty. The behavior
of a GP is determined by its kernel, which encodes some
measure of distance between inputs (e.g. `2 distance for
inputs in a vector space). There are two basic approaches
to define kernels over string inputs. The first is to define
specialized kernels that specifically operate on strings, e.g.
the substring kernel (Moss et al., 2020, SSK). The second
is to use some embedding procedure to map the strings to
features in a vector space, after which a standard kernel (e.g.
RBF) can be used.

Pre-trained language model embeddings Representa-
tions from pre-trained language models are a particularly
interesting embedding procedure. In the last few years
there has been rapid progress in pre-trained language mod-
els for proteins (Rao et al., 2019; Rives et al., 2019; Rao
et al., 2021). Biswas et al. (2020) and Hie et al. (2020)
explore using pre-trained language models for sequence de-
sign, demonstrating good performance even with limited
task-specific data. In our experiments we focus on embed-
dings derived from the BERT language model (Devlin et al.,
2018).

Deep ensembles One limitation of GPs, in particular
those equipped with string kernels, is superlinear scaling
in the number of datapoints and length of strings. Deep
ensembles of independently trained neural networks (Laksh-
minarayanan et al., 2016), are a popular alternative, and have
been shown to be robust to distribution shift and have well-
calibrated predictive uncertainty (Izmailov et al., 2021).

3. Evaluating Surrogate Models
In this section we discuss our procedure for evaluating differ-
ent potential surrogate models before progressing to wet-lab
experiments.

Model types We focus on methods that scale to large
search spaces (e.g. m = 300, |Σ| = 20 for the GFP protein
families) and are effective under data-scarcity.

RNN ENSEMBLE A deep ensemble of recurrent neural
networks (Cho et al., 2014).

CNN ENSEMBLE A deep ensemble of convolutional
neural networks (LeCun et al., 1998).

EMBEDDING ENSEMBLE A deep ensemble of multi-
layer perceptrons (MLPs) trained on fine-tuned BERT em-
beddings

GP SSK GP regression with the SSK kernel (Moss et al.,
2020).

Stability E4B

Figure 1: Cumulative max value of the objective function given a
fixed number of function evaluations. (Top): Substring (Bottom):
RNAFold. All Bayesian optimization methods are baselined
against the genetic optimizer. Ensemble methods clearly out-
perform competing approaches both in terms of max objective
value obtained and area under the curve. Shaded regions show two
standard deviations taken over 3 different seeds. Other objectives
shown in Appendix D

EMBEDDING GP GP regression with a Matérn- 52 kernel
over fine-tuned BERT embeddings.

Protein datasets We use three datasets as the basis for
our surrogate evaluation. Two of these datasets are standard
protein benchmarks made available in Rao et al. (2019),
while the third is obtained from Esposito et al. (2019).

LOCALFL GFP variants with log fluorescence labels
(Sarkisyan et al., 2016).

STABILITY Short proteins with stability labels (Rocklin
et al., 2017) .

E4B Variants of the Ubiquitination Factor E4B gene,
which we translate into proteins. The labels for this dataset
are the rate of ubiquitination of the target protein by E3
ubiquitin (Starita et al., 2013).

Black-box optimization tasks Our simulated black-box
objectives each map a protein sequence to a continuous
score.

SUBSTRING The number of occurrences of the most
common bigram in the string dataset. Similar objectives
appear in (Moss et al., 2020).

NN-ORACLE The ground truth label for each dataset
approximated by a neural network oracle. Specifically, we
fit a CNN oracle to the ground-truth labels of the entire
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Figure 2: Spearman’s ρ (Left) and ECE (Right) evaluated on the
surrogate models for in-distribution (IID) and out-of-distribution
(OOD). For the OOD evaluation, each surrogate model is trained
on the first 10 iterations of genetic optimization and evaluated on
the last 10 iterations (500 data points each) which tend to have
higher values of the objective. With the distribution shift the RNN
and CNN ensembles generalize well, while the performance of the
embedding models and GPs degrade substantially.

dataset and treat its predictions as the true objective. Sim-
ilar objectives are proposed in (Kumar and Levine, 2019;
Angermueller et al., 2020).

RNAFOLD The free energy of the protein’s RNA se-
quence calculated by a statistical simulation. We reverse-
translated each protein deterministically using a dictionary
lookup and then use the publicly available ViennaRNA pack-
age (Lorenz et al., 2011) to calculate the free energy.

Optimization procedure Every surrogate was required
to propose 20 rounds of 100 query points (the size of a
typical wet-lab batch) for each dataset-objective pair. We
maximized the upper confidence bound acquisition function
(Auer, 2002, UCB) with a tournament-style genetic opti-
mizer (Moss et al., 2020) to determine each batch, training
the surrogates on the initial data and their previous queries.
We compare the best seen objective value at each proposal
round for each surrogate, compared to that obtained by the
genetic optimizer with access to the true objective, restricted
to the same number of total objective function queries (Fig-
ure 1). Successful methods should both find the candidates
with the highest value of the objective and find them with
the fewest evaluations. We see that CNN and RNN en-
semble surrogate models consistently perform better than
competing approach across datasets and objective functions,
finding the best sequences faster.

Out-of-distribution robustness We now further investi-
gate what factors contribute to the success of ensemble
methods, since it is important to understand the underlying
factors of success before deploying the method to costly
wet-lab experiments. Prior work has predominantly focused
on evaluating methods end-to-end or creating hand-crafted
out-of-distribution (OOD) splits using heuristics like edit

distance to evaluate surrogates offline. We hope to test surro-
gate models on OOD generalization by comparing them in
regression on holdout sets that reflect the types of distribu-
tion shifts we might actually see in black-box optimization.
In order to construct realistic shifts, we generate batches
of query points with increasing fitness by maximizing our
black-box objectives with a genetic optimizer. The distri-
bution shift between batches is the same kind of shift we
would expect the surrogates to see candidates are gradu-
ally improving. We can evaluate our surrogates offline by
training on early batches and evaluating on later ones.

Figure 2 shows an evaluation of the surrogate models on
static splits from the optimizer averaged across the three
datasets and reward functions (9 distinct tasks). We use
Spearman’s ρ to gauge regression performance on the ob-
jective and expected calibration error (ECE) to gauge the
quality of the model’s uncertainties. Although the embed-
ding models and GPs approaches are well calibrated on
in-distribution data, the predictive performance and uncer-
tainty calibration of these models degrade sharply on out-
of-distribution data. In Figure 3, we visualize these errors
along with the predictive variances in a two dimensional
ESM embedding (Rives et al., 2021).

It has recently been suggested by Shanehsazzadeh et al.
(2020) that despite conventional wisdom, methods using
unsupervised pre-training do not outperform simple CNN
ensembles on benchmark regression tasks. We show that
the situation is even more extreme in the presence of distri-
bution shift. Over many rounds of optimization, these OOD
errors compound, leading to impoverished queries of the
objective function and worse optimization outcomes. Even
when given the amount of data, the superior generalization
abilities of deep ensembles enable rapid progress towards
promising regions of the search space.

4. Designing GFP Variants
With the previous evaluation complete, we are now suffi-
ciently confident in the reliability of CNN deep ensembles
to deploy them as surrogates to optimize a real black-box
protein optimization problem — maximizing the Stokes
shift of GFP variants. As its name suggests, GFP is a flu-
orescent protein that is useful for a variety of biomedical
research applications. When excited by light, GFP will re-
spond by emitting fluorescent light at varying wavelengths.
Briefly put, the wavelength that causes the protein to emit
the most light is the peak excitation wavelength, and the
wavelength emitted by the protein with the highest intensity
is the peak emission wavelength. The Stokes shift is the
difference between the peak excitation and peak emission
wavelengths. In order to avoid interference between the
light used to excite the protein and the light to be observed
emitting from the protein, it is desirable that the Stokes shift
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Figure 3: An illustration of model error and uncertainty under
distribution shift. Individual points represent proteins generated
by 10 rounds of genetic optimization on the RNAFold objective.
Locations are given by the first two principle components of the
ESM (Rives et al., 2021) embeddings. (left) The ground truth
scores of the proteins assigned by the RNAFold objective function
showing the distribution shift created by the optimizer. (right top)
Errors in the GP model become large more quickly as the distri-
bution shifts. (right bottom) Uncertainties in the GP model are
more well-calibrated in the GP model because posterior variance
in higher in all regions far from the training data.

Figure 4: Emission and excitation spectra for a parent GFP variant
(top) and our proposed descendent (bottom). Distinct lines denote
separate sweeps of measurement over wavelength. In the bottom
plot the distance between the two peaks has increased significantly,
as we intended.

be large. The Stokes shift of many commercially available
fluorescent proteins is less than 30nm.

FPBase (Lambert, 2019) is a database of fluorescent proteins
with labels including Stokes shift and brightness. Since the
dataset contains many sequences that are not GFP, we first
filtered out any sequences that were more than 20 edits from
the archetype avGFP sequence, denoting the remaining data
as “Trunc-FPBase”.

We used a CNN ensemble surrogate, the UCB acquisition
(λ = 0.1), and a genetic optimizer to propose a batch of 30
query sequences. The genetic optimizer was constrained to
make a maximum of 3 string edits relative to the proposal’s
parent sequence in the start pool to reduce the likelihood
of proposing proteins that would fail to fold. To ensure the
batch was diverse we performed 30 rounds of optimization
of the acquisition function, each time taking only the best

Acq. Fn. Seq. Type Stokes ∆ Stokes MaxRFU

Control Base 3.65e+01 - 1.99e+07
Opt. 7.32e+01 3.72e+01 8.54e+06

UCB-0.1 Base 3.05e+01 - 2.41e+07
Opt. 8.91e+01 5.85e+01 3.34e+06

Table 1: Wet-lab results optimizing GFP sequences. ∆ Stokes
indicates the change in average Stokes shift from the base se-
quences to the optimized sequences. MaxRFU is a measure of
brightness. Both the control and CNN-ensemble UCB increased
Stokes shift and decreased brightness.

ranked query point and removing its parent sequence from
the genetic optimizer start pool for later rounds. We also re-
stricted the optimizer start pool to sequences in the top 50%
of Trunc-FPBase ranked by brightness in order to avoid the
possibility of proposing sequences with no measurable fluo-
rescence. For comparison, we also proposed 10 sequences
with a control acquisition function that simply returned uni-
form random noise when evaluated. The procedural details
for the wet-lab experiments can be found in Appendix A.

We present the results of our first batch of proposals in
Table 1. We find that both the control acquisition and the
CNN-ensemble UCB acquisition successfully increased the
average Stokes shift of the base sequences. The increased
Stokes shift is visible in the qualitative example we provide
in Figure 4.

5. Discussion and Future Work
While our initial wet-lab results are encouraging, there are
several avenues for improvement. First, it is clear that the
task should be treated as a constrained black-box optimiza-
tion problem, since there is a minimal level of brightness
the GFP variants must have (as well as the requirement that
it can be expressed in the lab). There are also acquisition
functions explicitly meant for querying points in batches
that would promote diversity without resorting to heuristics.

In this work we investigated the performance of deep ensem-
bles, pre-trained embeddings, and Gaussian Processes for
application to the high dimensional optimization problem of
protein design. We introduced several synthetic benchmarks
that can be used on real protein sequences and closely align
with with typical target functions. We find that CNN and
RNN ensembles outperform the other approaches in opti-
mizing the target over multiple rounds of evaluation, owing
to their better robustness to distribution shift. Using these
insights, we aim these models at optimizing the Stokes shift
of Green Fluorescent Protein with a wet-lab experiment.
Synthesizing the novel GFP variants, we are able to improve
the average Stokes shift with new variants after one round
of optimization.
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Method LocalFL Stability E4B

DE (CNN) 0.75± 0.04 0.84± 0.03 0.76± 0.04
DE (RNN) 0.54± 0.03 0.59± 0.01 0.52± 0.05
DE (Emb.) 0.71± 0.01 0.57± 0.17 0.29± 0.12
GP (Emb.) 0.58± 0.07 0.56± 0.12 0.13± 0.08
GP (SSK) 0.51± 0.05 0.46± 0.05 0.07± 0.04

Table 2: Spearman’s ρ between predicted and ground truth labels on test set when training on relatively small splits (n = 500) of the
training data. Errors represent one standard deviation over 3 independent splits.

A. Detailed Wet-Lab Procedure
We synthesized fluorescent proteins with NEB PURExpress in vitro protein synthesis kits in 30 uL reactions from linear DNA
purchased from IDT as eBlock dsDNA gene fragments. We ran reactions at 30C overnight in black, half-area microplates
(Corning #3993) with optically clear plate adhesive and measured excitation and emission through a series of sweeps
(fixing the excitation wavelength and scanning emission every 2 nm, or vice versa). We determined peak excitation and
peak emission as the wavelength that gave maximum fluorescence units and calculated the Stokes shift as the difference in
between the peaks.

B. Additional Comparisons
We also present results for regression on each of the datasets we describe in Section 3, demonstrating that deep ensembles
yet again out-performing the competing approaches.

C. Implementation Details

def ConvBNswish ( in_ch , out_ch , k s i z e =5 , s t r i d e = 1 ) :
re turn nn . S e q u e n t i a l (

nn . Conv1d ( in_ch , out_ch , k s i z e , padd ing = k s i z e / / 2 , s t r i d e = s t r i d e ) ,
nn . BatchNorm1d ( o u t _ c h a n n e l s ) ,
Swish ( )

)

c l a s s CNN( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , d i c t _ s i z e =20 , k =128 , p = 0 . 5 ) :

super ( ) . _ _ i n i t _ _ ( )
s e l f . n e t = nn . S e q u e n t i a l (

nn . Embedding ( d i c t _ s i z e , k ) ,
E x p r e s s i o n ( lambda x : x . permute ( 0 , 2 , 1 ) ) ,
ConvBNswish ( k , k ) ,
ConvBNswish ( k , 2 * k ) ,
nn . MaxPool1d ( 2 ) ,
nn . Dropout2d ( p ) ,
ConvBNswish (2* k , 2 * k ) ,
ConvBNswish (2* k , 2 * k ) ,
nn . MaxPool1d ( 2 ) ,
nn . Dropout2d ( p ) ,
ConvBNswish (2* k , 2 * k ) ,
ConvBNswish (2* k , 2 * k ) ,
nn . Dropout2d ( p ) ,
E x p r e s s i o n ( lambda u : u . mean ( − 1 ) ) ,
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nn . L i n e a r (2* k , 1 )
)

def f o r w a r d ( s e l f , x ) :
re turn s e l f . n e t ( x ) [ . . . , 0 ]

c l a s s RNN( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , d i c t _ s i z e =20 , k =256 , n l a y e r =2 , b i =True ) :

super ( ) . _ _ i n i t _ _ ( )
s e l f . n l a y e r = n l a y e r
s e l f . g ru = nn .GRU( k , k , n l a y e r , b i d i r e c t i o n a l = b i )
s e l f . embedding = nn . Embedding ( d i c t _ s i z e , k )
s e l f . l i n e a r = nn . L i n e a r ( k *(1+ b i ) , 1 )
s e l f . b i = b i

def f o r w a r d ( s e l f , x ) :
x = s e l f . embedding ( x ) . pe rmute ( 1 , 0 , 2 )
n , bs , k = x . shape
h0 = t o r c h . z e r o s ( s e l f . n l a y e r *(1+ s e l f . b i ) , bs , k )
out , h f = s e l f . g ru ( x , h0 )
re turn s e l f . l i n e a r ( o u t . mean ( 0 ) ) . r e s h a p e ( −1)

D. Remaining Evaluation Plots
We show max cumulative objective plots for the remaining datasets and tasks in Figure 5.
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Stability E4B LocalFL

Figure 5: Cumulative max value of the objective function given a fixed number of function evaluations. (Top): Substring. (Middle):
RNAFold. (Bottom): NNOracle. All Bayesian optimization methods are baselined against the genetic optimizer. Results for SSK GP on
LocalFL are not shown because of computational overhead. Shaded regions show two standard deviations taken over 3 different seeds.
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