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Abstract

Multimodal data is rapidly growing in single-cell
biology and other fields of science and engineer-
ing. We introduce MultiMAP, an approach for
dimensionality reduction and integration of multi-
ple datasets. MultiMAP is a nonlinear manifold
learning technique that recovers a single manifold
on which all datasets reside and then projects the
data into a single low-dimensional space so as to
preserve the manifold structure. MultiMAP has
several advantages over existing integration strate-
gies for single-cell data, including that it can inte-
grate any number of datasets, leverages features
that are not present in all datasets (i.e. datasets can
be of different dimensionalities), is not restricted
to a linear mapping, allows the user to specify
the influence of each dataset on the embedding,
and is extremely scalable to large datasets. We
apply MultiMAP to the integration of a variety
of single-cell transcriptomics, chromatin acces-
sibility, methylation, and spatial data, and show
that it outperforms current approaches in preser-
vation of high-dimensional structure, alignment
of datasets, visual separation of clusters, transfer
learning, and runtime. The MultiMAP codebase
is available at this https url.

1. Introduction
Multimodal data is rapidly growing in single-cell biology
and many other fields of science and engineering. Emerg-
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ing single-cell technologies are providing high-resolution
measurements of different features of cellular identity, in-
cluding single-cell assays for gene expression, protein abun-
dance[2,3], chromatin accessibility[4], DNA methylation[5],
and spatial resolution[6]. Large scale collaborations includ-
ing the Human Cell Atlas international consortium[7],[8]
are generating an exponentially increasing amount of data
of many biological tissues, using a myriad of technologies.
Each technology provides a unique view of cellular biol-
ogy and has different strengths and weaknesses. Integrating
these measurements in the study of a single biological sys-
tem will open avenues for more comprehensive study of
cellular identity, cell-cell interactions, developmental dy-
namics, and tissue structure[9].

The integration of multi-omic data poses several chal-
lenges[10]. Different omics technologies measure distinct
unmatched features with different underlying distributions
and properties and hence produce data of different dimen-
sionality. This makes it difficult to place data from differ-
ent omics in the same feature space. Additionally, omics
technologies can also have different noise and batch char-
acteristics which are challenging to identify and correct.
Further, as multi-omic data grows along two axes, the num-
ber of cells per omic and the number of omics per study,
integration strategies need to be extremely scalable.

Most data integration methods project multiple measure-
ments of information into a common low-dimensional rep-
resentation to assemble multiple modalities into an inte-
grated embedding space. Recently published methods em-
ploy different algorithms to project multiple datasets into an
embedding space, including canonical correlation analysis
(CCA)[11], nonnegative matrix factorization (NMF)[]12]
or neural network models[13]. While these methods can be
tremendously powerful, they suffer from several shortcom-
ings. Current methods require correspondence between the
features profiled across omics technologies. A further draw-
back is that methods that use linear models, such as CCA
and NMF, are not able to capture non-linear differences
between datasets. Another limitation of these methods is
they cannot scale to large datasets, failing on datasets of
hundreds of thousands to millions of cells.

https://github.com/Teichlab/MultiMAP
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Figure 1. Schematic of MultiMAP. a. MultiMAP takes any number of datasets, including those of differing dimensions, recovers
geodesic distances on a single latent manifold on which all data lie, constructs a neighborhood graph (MultiGraph) on the manifold, and
then projects the data into a single low-dimensional embedding. Integrated analysis and visualisation can be performed on the embedding
or graph. Variables are discussed in Methods. Xi is dataset i, xji is a point in Xi, M is the shared manifold, B(x2

i ) is a ball on M
centered at x2

i , Xij is the ambient space of M in the coordinate space with data containing points from datasets i and j, gij is the metric of
M in the space Xij , µ is the membership function of the fuzzy simplicial set on the manifold, ν is the membership function of the fuzzy
simplicial set in the low-dimensional space. The mathematical formulation of MultiMAP is elaborated in Supplementary Methods. b. In
the field of cell atlas technologies, encompassing single cell genomics and spatial technologies, MultiMAP can be applied to integrate
across different omics modalities, species, individuals, batches, and normal/perturbed states.

Here we introduce a method that overcomes all these lim-
itations: MultiMAP, an approach for the dimensionality
reduction and integration of multiple datasets. MultiMAP
integrates data by constructing a non-linear manifold on
which diverse high-dimensional data reside and then pro-
jecting the manifold and data into a shared low-dimensional
space. In contrast to other integration strategies for single-
cell data, MultiMAP can integrate any number of datasets, is
not restricted to a linear mapping, leverages features that are
not present in all datasets (i.e. datasets can be of different
dimensionalities), allows the user to specify the influence
of each dataset on the embedding, and is effortlessly scal-
able to large datasets. The ability of MultiMAP to integrate
datasets of different dimensionalities allows the strategy
to leverage information that is not considered by methods
that operate in a shared feature space. (e.g. MultiMAP can
integrate the 20,000-feature gene space of scRNAseq data
together with a 100,000-feature peak space of scATACseq
data).

We apply MultiMAP to challenging synthetic multimodal
data, and demonstrate its ability to integrate a wide range of
single-cell omics datasets. We show that MultiMAP can co-
embed datasets across different technologies and modalities,
while at the same time preserving the structure of the data,
even with extensive biological and technical differences.
The resulting embedding and shared neighborhood graph
(MultiGraph) can be used for simultaneous visualisation

and integrative analysis of multiple datasets. With respect to
single cell genomics data, this allows for standard analysis
on the integrated data, such as cluster label transfer, joint
clustering, and trajectory analysis.

2. Results
2.1. The MultiMAP Framework

We introduce MultiMAP, an approach for integration and
dimensionality reduction of multimodal data based on a
framework of Riemannian geometry and algebraic topology.
MultiMAP takes as input any number of datasets of poten-
tially differing dimensions. MultiMAP recovers geodesic
distances on a single latent manifold on which all of the
data is uniformly distributed. The distances are calculated
between data points of the same dataset by normalizing dis-
tances with respect to a neighborhood distance specific to
the dataset, and between data points of different datasets by
normalizing distances between the data in a shared feature
space with respect to a neighborhood parameter specific to
the shared feature space. These distances are then used to
construct a neighborhood graph (MultiGraph) on the man-
ifold. Finally, the data and manifold space are projected
into a low-dimensional embedding space by minimizing the
cross entropy of the graph in the embedding space with re-
spect to the graph in the manifold space. MultiMAP allows
the user to modify the weight of each dataset in the cross
entropy loss, allowing the user to modulate the contribution
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of each dataset to the layout. Integrated analysis can be per-
formed on the embedding or the graph, and the embedding
also provides an integrated visualization. The mathematical
formulation of MultiMAP is elaborated in Supplementary
Methods.

In order to study MultiMAP in a controlled setting, we first
applied it to two synthetic examples of multimodal data
(Methods). The first synthetic data consists of points sam-
pled randomly from the canonical 3D “Swiss Roll” surface
and the 2D rectangle (Figure 2a). The dataset is considered
multimodal data, because samples are drawn from different
feature spaces but describe the same rectangular manifold.
In addition, we are given the position along the manifold of
1% of the data. This synthetic setting illustrates that Mul-
tiMAP can integrate data in a nonlinear fashion and operate
on datasets of different dimensionality, because data points
along a similar position on the manifold are near each other
in the embedding (Figure 2b). The MultiMAP embedding
properly unrolls the Swiss Roll dataset, indicating that the
projection is nonlinear. The embedding also appears to pre-
serve aspects of both datasets; the data is curved and at the
same time unrolled.

To determine if MultiMAP can effectively leverage features
unique to certain datasets, we used the MNIST database[14],
where handwritten images were split horizontally with thin
overlap (Figure 2c; see Methods for details). The two
datasets can be considered multimodal because they have
different feature spaces but describe the same set of digit
images. The thin overlapping region of the two halves is
not enough information to create a good embedding of the
data (Figure 2c). Many distinct digits are similar in this thin
central sliver, and hence they cluster together in the feature
space of this sliver. Indeed, in a UMAP projection of the
data in the shared feature space of this overlap, the clusters
of different digits are not as well separated as in the UMAP
projections of each half (Figure 2c).

A multimodal integration strategy that effectively leverages
all features would use the features unique to each half to
separate different digits, and the shared space to bring the
same digits from each dataset close together (Figure 2d).
We show that with MultiMAP the different modalities are
well mixed in the embedding space and the digits cluster
separately, despite mostly different feature spaces and noise
being added to only the second dataset. This indicates that
MultiMAP is leveraging the features unique to each dataset
and is also robust to datasets with different noise.

2.2. Benchmarking

We assessed and benchmarked the performance of Mul-
tiMAP against several popular approaches for integrating
single-cell multi-omics, including Seurat 3[11], LIGER[12],
Conos[22] and GLUER[23].

These integration approaches differ in key regards, sum-
marized in Figure 3c. We used a diversity of performance
metrics to comprehensively compare MultiMAP with other
approaches, including transfer accuracy, silhouette score,
alignment, preservation of the structure, and runtime. With
these metrics, we quantified the separation of the joint clus-
ters, how well mixed the datasets were after integration
and how well they preserved the structure in the original
datasets to investigate whether the methods integrate popu-
lations across datasets without blending distinct populations
together.

We benchmarked MultiMAP using a variety of multi-omic
data with both newly generated and published cell type
annotations. This includes scATAC-seq and scRNA-seq
data of the mouse spleen (n=1) [15], scATAC-seq and
scRNA-seq data data of human bone marrow and periph-
eral blood mononuclear cells [16], and scRNA-seq and spa-
tial STARmap (n=2) data of the mouse brain [18]. For all
datasets, MultiMAP achieves top or near top performance
on all metrics (Figure 3a). The embeddings produced by
MultiMAP prove superior for transferring cell type anno-
tations between datasets, separating clusters of different
cell populations, integrating datasets in a well-mixed man-
ner, and capturing the high-dimensional structure of each
dataset.

Critically, MultiMAP is significantly faster and more scal-
able than all other benchmarked methods, and significantly
faster than LIGER and Seurat 3 (Figure 3b). Seurat 3 and
LIGER were not able to scale to the primary cortex data
of 600k, producing out-of-memory errors despite access to
218 GB of RAM.

3. Discussion
Here we present a novel approach for dimensionality re-
duction and integration of multimodal data. MultiMAP
estimates a non-linear manifold on which all data reside and
then projects this manifold space into a low dimensional
embedding. This enables both visualization and integrated
downstream analyses of all datasets simultaneously. Cru-
cially, our method takes into account the full data, even
when they have different feature spaces, and thus takes ad-
vantage of the full power of multi-omics data. Ignoring
the features unique to one dataset (as in existing methods),
may omit important information, for instance distinguish-
ing features of certain subpopulations of cells and yield
an integrated embedding that does not distinctly cluster all
subpopulations. Comparison with existing methods for inte-
gration shows that MultiMAP outperforms or has close to
best performance in every performance metric studied. In
particular, MultiMAP far more fast and scalable than current
approaches.
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Figure 2. MultiMAP applied to synthetic data. a. Data sampled from the 3D Swiss Roll (X1) and a 2D rectangle (X2). b. Shared
embedding of both datasets produced by MultiMAP. Color indicates position along the manifold (a,b). c. Left (X1) and right (X2) halves
of MNIST handwritten digit images with a 2 pixel wide shared region. Gaussian noise is added to the left half. UMAP projections of each
half and the shared region. d. Shared embedding of both MNIST halves (including Gaussian noise introduced for the left half) produced
by MultiMAP. Each color is a different handwritten digit (0-9 as shown in the key). This illustrates that MultiMAP leverages both shared
and unshared features to integrate multimodal datasets.

Using synthetic examples to illustrate the power of the
method, we show that MultiMAP leverages the features
unique to each dataset, is capable of discovering non-linear
transformations, and is robust to data with noise. Through-
out our applications of MultiMAP to diverse single-cell
multi-omic data, we demonstrate that our method can fa-
cilitate integration across transcriptomic, epigenomic, and
spatially resolved datasets, and derive biological insights
jointly from multi-omic single-cell data. This demonstrates
that MultiMAP can align datasets across different technolo-
gies and modalities even with extensive biological and tech-
nical differences. The ability of MultiMAP scale to massive
datasets and integrate more than two omics technologies
opens many opportunities for the comprehensive study of tis-
sues. Crucially, we show that MultiMAP is flexible enough
to integrate datasets with different clusters and cell popula-
tions, illustrating that MultiMAP is applicable even when
datasets contain some different cell type populations.

Perhaps the greatest potential lies in applying MultiMAP
to datasets beyond those considered here. Integrative anal-
ysis with MultiMAP can be used to compare healthy and
diseased states, and identify pathologic features, or to un-
cover cell-type specific responses to perturbations. Other

examples include the integration of data across species to
enable studying the evolution of cell states and identifying
conserved cell types and regulatory programs. Along sim-
ilar lines, the integration of in vivo with in vitro models
such as organoids will reveal the quality or faithfulness of
cells in a dish relative to their native counterparts. Finally,
given the rapid development of joint multimodal single cell
genomics methods (e.g. CITEseq for protein and RNA,
joint snRNA- and ATACseq), it is relevant to emphasize that
MultiMAP can be applied to multi-omic data acquired both
from different cells as well as from the same cells.

In summary, given the broad appeal of dimensionality reduc-
tion methods (e.g. PCA, tSNE, UMAP), and the growth of
multimodal data in many areas of science and engineering,
we anticipate that MultiMAP will find wide and diverse use.
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Figure 3. MultiMAP applied to single-cell data. a. MultiMAP embedding of the integration of published scATAC-seq15 and newly
generated scRNA-seq data of the mouse spleen (n=1), colored by omic technology and independent cell type annotations of each omic
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embedding of scRNA-seq17 (n=2) and spatial STARmap[18] (n=2) data of the mouse brain, colored by omic technology and joint clusters
identified with the MultiGraph. d. MultiMAP embedding of the integration of single-cell transcriptomics, chromatin accessibility, and
DNA methylation of the mouse primary cortex, colored by omic technology and the published cell type annotation[20].
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data points (218 GB RAM). To produce these datasets we subsampled the mouse primary cortex scRNA-seq and scATAC-seq data[20]
using geometric sketching[33]. The datasets were subsampled so that there are equal number of cells in the scRNA-seq and scATAC-seq
data until 100,000 cells. Since the scATAC-seq data had 81,196 cells in total, for the 500,000 cells comparison, we used an scRNA-seq of
418,804 cells. c. Comparison of capabilities and properties of each method. “Mapping” refers to the nature of the mapping employed by
the method; “Max no. datasets” refers to the upper limit in terms of numbers of datasets accepted by the method; “Scalable to large data”
refers to allowing a total of over 500,000 cells; “Data-set specific features” is whether the integration method allows information that
is not shared across datasets; and “Dataset influence on integration” is whether the user can modulate the weighting of a given dataset
relative to the others during the integration.
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5. Supplemental

Figure S1. MultiMAP’s weight parameter. a. UMAP projections of the two halves of the MNIST handwritten digit images. b.
MultiMAP embeddings as the weight parameters are varied. Each color is a different handwritten digit (0-9). When ω1 is larger than ω2,
the embedding more closely resembles the projection of only X1; when ω2 is larger than ω1, the embedding more closely resembles the
projection of only X2. For different choices of ωv , the datasets are well integrated in the embedding space. c. MultiMAP integration with
varied weight parameters of published scATAC-seq and newly generated scRNA-seq data of the mouse spleen (n=1) [15]. d. Comparison
of the MultiMAP integration of the spleen data as the weight parameter is varied – in terms of transfer learning accuracy (“Transfer”),
separation of cell type clusters as quantified by Silhouette coefficient (“Silhouette”), and preservation of high-dimensional structure as
measured by the Pearson correlation between distances in the high- and low-dimensional spaces (“Structure”)
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Figure S2. MultiMAP integration with non-shared clusters. a. MultiMAP integration of the left and right halves of MNIST handwritten
digit images with a 2 pixel wide shared region. Gaussian noise is added to the left half. MultiMAP integration is performed with a varying
number of digit clusters removed from the right dataset, so that the integration ranges from one shared cluster (10%) to all clusters shared
(100%). b. Comparison of the MultiMAP integration of the modified MNIST dataset as the percent of clusters shared is varied – in
terms of transfer learning accuracy (“Transfer”), separation of cell type clusters as quantified by Silhouette coefficient (“Silhouette”), and
preservation of high-dimensional structure as measured by the Pearson correlation between distances in the high- and low-dimensional
spaces (“Structure”).
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Figure S3. MultiMAP integration with all features vs. only shared features in the spleen scRNA-seq + scATACseq, and visual
cortex STARmap + scRNAseq datasets. a. MultiMAP embeddings using all genes present in each dataset (intended use of MultiMAP).
b. MultiMAP embeddings using only genes shared by all datasets in each integration. c. Comparison of the MultiMAP integration with
all features vs. only shared features – in terms of transfer learning accuracy (“Transfer”), separation of cell type clusters as quantified by
Silhouette coefficient (“Silhouette”), mixing of different datasets as measured by fraction of nearest neighbours that belong to a different
dataset (“Alignment”), and preservation of high-dimensional structure as measured by the Pearson correlation between distances in the
high- and low-dimensional spaces (“Structure”).


