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Daniel Hesslow 1 Niccolò Zanichelli 1 Pascal Notin 2 Iacopo Poli 1 Debora Marks 3

Abstract

In this work we introduce RITA: a suite of autore-
gressive generative models for protein sequences,
with up to 1.2 billion parameters, trained on over
280 million protein sequences belonging to the
UniRef-100 database. Such generative models
hold the promise of greatly accelerating protein
design. We conduct the first systematic study of
how capabilities evolve with model size for au-
toregressive transformers in the protein domain:
we evaluate RITA models in next amino acid pre-
diction, zero-shot fitness, and enzyme function
prediction, showing benefits from increased scale.
We release the RITA models openly, to the benefit
of the research community.

1. Introduction
The ability to reliably design new proteins to tackle specific
problems would mark the beginning of a new age, compara-
ble to the transition between Stone and Iron age, according
to Huang et al. (2016). While significant progress has been
achieved towards this goal, beginning with directed evo-
lution for protein engineering (Arnold, 1998), much work
remains to be done. Machine learning has been applied to
a number of problems in computational biology in recent
years, with promising results. A substantial fraction of re-
cent advances in this area has been possible thanks to the
application of techniques originally developed for natural
language processing (NLP), in particular with the recent
trend towards large language models, motivated by the dis-
covery of scaling laws (Kaplan et al., 2020; Hoffmann et al.,
2022). In the world of protein design, there have also been
efforts to train large generative models. The largest protein
language model, ProGen (Madani et al., 2020), has been
shown to be capable of generating protein sequences char-
acterized by some desired downstream functions (Madani
et al., 2021), but unfortunately the model remains closed
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source. Downstream open-source experimentation is im-
portant to discover surprising and unpredictable capabilities
that are hard to discern without large-scale experimenta-
tion (Ganguli et al., 2022). This was recently exemplified
when independent researchers discovered that AlphaFold 2
(Jumper et al., 2021) could successfully predict multimer
interactions, even though it had only been trained to predict
the structure of single protein chains (Yoshitaka, 2021; Baek,
2021). In addition, there exists no systematic study about
the evolution of capabilities with respect to model size in
the protein domain: Rao et al. (2020) and Rives et al. (2021)
provided such a study for bidirectional transformers, and
Madani et al. (2020) simply noted that their largest model
was still underfitting.

Our contributions are as follows:

• We introduce RITA1, a family of generative protein
sequence models for protein design with up to 1.2B
parameters.

• We study the relationship between model size and
downstream task performance, taking a first step to-
wards establishing scaling laws for protein sequence
modeling.

• We release RITA models on Hugging Face and make
them available to the scientific community at https:
//github.com/lightonai/RITA.

2. Related Work
2.1. Language models for natural language processing

Large transformer models have grown to become the de
facto standard in natural language processing. As model
size increased, a new paradigm of in-context learning and
zero-shot classification has emerged. Instead of finetun-
ing language models on specific tasks, models are instead
trained on massive unstructured pre-training corpora where
they can learn to solve a wide variety of tasks without ex-
plicit dataset curation. An important factor in the explosion
of work on increasingly large language models is the dis-
covery of scaling laws (Kaplan et al., 2020; Hoffmann et al.,
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Table 1. Perplexity evaluation: We evaluate generative protein models on the upstream modeling perplexity on four different datasets. In
all cases performance is correlated with model size and RITA-XL provides the best results, highlighted in bold.

RITA BASELINE
DATASET SMALL MEDIUM LARGE XLARGE PROTGPT2

UNIREF-100 10.07 7.47 6.18 5.48 18.10
METACLUST 15.08 13.80 12.17 11.53 21.07
MGNIFY 13.57 12.12 10.72 9.89 21.10
PFAM HELDOUT 11.78 10.68 9.23 7.95 15.05

Table 2. Fitness evaluation - ProteinGym substitution benchmark: We compute the Spearman’s rank correlation between the fitness
value measured experimentally and the predicted fitness value across the 87 substitution DMS assays from ProteinGym, and report the
average values. RITA models approach the performance of specialized models with increasing parameter count, exceeding that of ESM-1v.
Baselines results are based on a single seed. Results provided in full in Table 5. Best performance is in bold.

RITA BASELINES
SMALL MEDIUM LARGE XLARGE ESM-1V MSA TRANSFORMER TRANCEPTION EVE

AVG FITNESS 0.330 0.370 0.381 0.387 0.371 0.422 0.451 0.448

2022), guiding decisions on optimal model and dataset size
for a given compute budget. They allow the a priori estima-
tion of the expected language modeling loss, reducing the
risks associated with training such large models.

While massive unstructured pre-training corpora are readily
available for protein sequences, there has only been limited
work in both scaling up generative protein sequence models
to the sizes seen in NLP, and in studying the effect of scaling
on relevant downstream tasks. For these reasons, we explore
the capabilities of generative protein models as model size
is increased, facilitating future work on further scaling.

2.2. Protein Sequence Models

Much work has gone into exploring the potential of protein
sequence models. UniRep (Alley et al., 2019) demonstrated
that the internal representation learned by an LSTM-based
protein sequence model was sufficient to predict protein sec-
ondary structure, stability, and downstream function. Sub-
sequent works focusing on bidirectional models, including
TAPE-BERT, ESM-1b, ProtTrans and ProteinBERT (Rao
et al., 2019; 2020; Rives et al., 2021; Elnaggar et al., 2021;
Brandes et al., 2021) have improved upon this by employ-
ing more capable models based on Transformers (Vaswani
et al., 2017). DeepSequence (Riesselman et al., 2017) and
ESM-1v (Meier et al., 2021) have shown that these represen-
tations can also be successfully leveraged for variant effect
prediction, whereas RGN2 (Chowdhury et al., 2021) re-
cently demonstrated their utility for fast and accurate single-
sequence tertiary structure prediction.

UniRep has been successfully employed for protein en-
gineering (Biswas et al., 2020), and the more recent
transformer-based ProGen (Madani et al., 2020) is capable

of generating proteins with a number of desired character-
istics by conditioning the model on a variety of sequence
metadata.

Furthermore, several works have explored the use of gener-
ative protein sequence models as part of a fixed-backbone
protein design pipeline, either by conditioning the sequence
model on structural information through a cross-attention
setup (Ingraham et al., 2019), by coupling it with a struc-
ture predictor enhanced decoding strategy (Moffat et al.,
2021) or by iteratively finetuning it on sequences refined by
AlphaFold 2 (Moffat et al., 2022).

3. Methods
3.1. Model Architecture

A range of techniques to control neural language generation
have been developed recently (Weng, 2021; Zarrieß et al.,
2021). However, to provide the scientific community with a
model as generally applicable as possible, we chose to train
our models as decoder-only transformer models without
any conditioning information. We performed a small abla-
tion study over positional embedding techniques, where we
evaluated Rotary Positional Embeddings (RoPE) (Su et al.,
2021) and AliBi (Press et al., 2021), and chose to use RoPE
due to the resulting lower language modeling loss, shown
in Table 7. We trained four different models in order to
study the relationship between model size and downstream
capability, and use the same model hyperparameters and
naming scheme as GPT-3 (Brown et al., 2020).

While tokenization is widely used in natural language pro-
cessing, there are important differences between natural
languages and protein sequences: books consists of hun-
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Table 3. Enzyme function prediction: We predict the functional properties of proteins in SwissProt and report the top-k accuracy.
Performance scales smoothly with model size and RITA-XL gives the best results, highlighted in bold.

RITA BASELINE
TOP-K SMALL MEDIUM LARGE XLARGE PROTGPT2

@1 87.8 89.5 90.8 91.6 85.7
@3 90.7 90.2 93.2 93.7 88.7
@10 92.4 93.9 94.5 94.7 90.6

dreds of thousands of characters while the average protein
sequence in UniProtKB/TrEMBL is only 349 amino acids
long. Protein sequences also lack a natural decomposition
into something equivalent to words. Additionally, using
tokenization schemes with a varied-length vocabulary may
have undesirable side effects, such as producing tokenized
sequences of different lengths for two proteins that would
only differ by a single substitution. This would complicate
the comparison of relative likelihoods, or the generation
of sequences with a target output length (e.g., for fixed-
backbone protein design).

3.2. Data

To preserve all information contained within the pre-training
data we chose not to perform any clustering before training.
We focus on three different pre-training corpora: UniRef-
100 (The UniProt Consortium, 2020), MGnify (Mitchell
et al., 2020) and Metaclust (Steinegger & Söding, 2018),
each providing a sufficient amount of tokens for model pre-
training without having to repeat the data. We then train
three small models for a short amount of time to estimate
transferability of each dataset to the others. The experi-
ments showed that we would get the best results by utilizing
UniRef-100 followed by Metaclust, and worst results with
MGnify, as shown in Table 8. However, we note that using
a combination of several datasets may be beneficial.

During pre-training we randomly map amino acids B, Z and
J to (D,N), (E,Q) and (I,L) respectively and remove
any sequence containing X. We train both on the primary
sequence and its reverse.

3.3. Training

We utilize the Megatron-Deepspeed framework to achieve
high training throughput and train the models using a com-
bination of data and pipeline parallelism.

All models were trained on a total of 150 billion amino
acids, and the training runs were performed on the Jean
Zay supercomputer of IDRIS. The models were trained for
a total training time of over 25 thousand Nvidia-V100
GPU hours. We utilize the Adam optimizer (Kingma & Ba,
2015), a batch size of 512, and a context size of 1024 for all
experiments.

Figure 1. Protein modeling loss as a function of compute measured
in PetaFLOPS-days (PF-days).

4. Evaluation
4.1. Perplexity evaluation

Autoregressive models are typically evaluated by their mod-
eling loss. The model is trained on this task and it should
broadly reflect its capabilities. We measure the perplexity on
three different protein databases: UniRef-100, MGnify and
Metaclust. Our models are trained on UniRef-100, a large
collection of sequenced proteins, whereas Metaclust and
MGnify consist of metagenomically transcribed proteins.
We argue that this should provide a challenging distribution
shift for the model. We additionally withheld a set of twenty
protein families (the same held out by Madani et al. (2020))
to evaluate the generalization to unseen protein families.

For all datasets we compare our results with those of Prot-
GPT2 (Ferruz et al., 2022). Since ProtGPT2, is trained on
tokenized sequences, we measure the perplexity per amino
acid 2. We present our results in Table 1 where we can see
that there is a clear improvement with increasing model size.

4.2. Scaling Laws

By training four generative protein sequence models ranging
over an order of magnitude in size, we are able to establish
scaling laws similar to those established by Kaplan et al.
(2020) for natural language processing, see Figure 1. We
observe an exponent of 0.74, significantly steeper than the

2See appendix E for a discussion around perplexity per byte
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Table 4. Prompt tuning: We perform prompt tuning to generate proteins from the family PF03272. The perplexity of the
Prompt-Tuned Model is significantly lower than the one of the Base Model, indicating the the model has learned to better
generate proteins from the target family.

RITA
PERPLEXITY SMALL MEDIUM LARGE XLARGE

BASE MODEL 15.69 13.60 10.43 7.35
PROMPT-TUNED MODEL 10.37 9.19 6.99 4.96

one observed in NLP of around 0.5. In the regime we have
analyzed, up to 1.2 billion parameters, scaling up protein
sequence models is thus significantly more beneficial than
scaling up language models in NLP. However, in contrast to
NLP, where the modeling loss typically follows the power
law relationship remarkably closely, we observe some de-
viation. In particular, we observe a sharp decrease of loss
for our largest model after a significant amount of training,
and note that the loss does not go above 2.8 due to the small
vocabulary size. Interestingly, even though our models are
trained far beyond the point of optimality in NLP, all but our
smallest model still appear to be undertrained. Our models
are trained for 150 billion amino acids, whereas Kaplan et al.
(2020) and Hoffmann et al. (2022) estimated optimality for
our largest model at around 25 billion amino acids.

4.3. Mutation Effects Prediction

We assess the ability of our models to predict the effects
of mutations by interpreting the likelihood that the model
outputs for a given protein as its fitness value. We use
the ProteinGym benchmarks (Notin et al., 2022) which
provide experimentally-measured fitness values across 94
Deep Mutational Scanning (DMS) assays. On the substi-
tution benchmark (Table 2), we compare against several
baselines, including MSA Transformer (Rao et al., 2021),
ESM-1v (Meier et al., 2021), Tranception (Notin et al.,
2022) and EVE (Frazer et al., 2021). We observe that the
performance of RITA models increases with model size,
exceeding that of ESM-1v for the Large and XLarge vari-
ants. While alignment-based models (eg., EVE) and models
relying on the marked-marginals heuristics for scoring (eg.,
ESM-1v, MSA Transformer) are unable to score indels, au-
toregressive transformers such as RITA models can quantify
their fitness out-of-the-box, performing on par with the spe-
cialized models introduced in Shin et al. (2021) (Table 6).

4.4. Enzyme Function Prediction

To evaluate the capability of the models to predict enzyme
function, we utilize the sequence representation obtained
at the final token. Following ProteInfer (Sanderson et al.,
2021), we extract enzyme commission metadata from Swis-
sProt (Bairoch & Apweiler, 2000) and focus on the tags

belonging to the finest classification level (randomly choos-
ing one for those with multiple tags), obtaining a classifica-
tion problem with 4793 classes. The processed dataset
is available at https://huggingface.co/datasets/
lightonai/SwissProt-EC-leaf.

We train a linear classifier for one epoch on top of the ex-
tracted representations, and present the results in Table 3.
Similar to previous tasks, performance increases with scale.

4.5. Prompt Tuning

Language models can solve a wide variety of tasks by pre-
fixing the generation with a manually created prompt. This
practice has received the name of prompt engineering, in
reference to the laborious process of finding a prompt that
yields satisfactory generation. Inspired by this, Lester et al.
(2021) developed prompt tuning, a method to automatically
learn soft prompts in the embedding space. Prompt tuning
has emerged as an important way to perform parameter
efficient fine-tuning, learning only a fraction of the number
of parameters typically needed for fine-tuning.

We investigate if it is possible to add controllable generation
to pre-trained protein sequence models by leveraging prompt
tuning. We arbitrarily chose one of the protein families that
were held out during training, PF03272, and learned a
prompt specializing in generating proteins from this family.
In Table 4 we see a significant reduction in perplexity with
prompt tuning, showing that the model is indeed able to
learn to generate proteins from this protein family.

5. Conclusion and Future Work
In this work we have presented RITA, a family of genera-
tive protein sequence models, aiming to accelerate future
work on protein design. We have systematically evaluated
how model capabilities increase with size and taken a first
step towards establishing scaling laws for protein sequence
modeling. We believe that the release of our models will
represent a building block for future endeavours into pro-
tein design. We also look forward to future work studying
RITA-designed proteins in-vitro, further scaling up protein
sequence models or augmenting them with target structure
embeddings for fixed-backbone protein design.

https://huggingface.co/datasets/lightonai/SwissProt-EC-leaf
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A. Full results from our fitness evaluation.

Table 5. Fitness evaluation - ProteinGym substitution benchmark: Spearman’s rank correlation between experimentally measured
fitness values for different proteins and the value predicted by the models. Baselines results are based on a single seed. Tranception
NR and Tranception R are variants without and with retrieval respectively. We follow the same approach as in Notin et al. (2022) and
aggregate results at the Uniprot ID level to avoid biasing results towards proteins for which several assays are available. To compare with
models relying on evolutionary data in the form of multiple-sequence alignments (eg., EVE), we only evaluate on the subset of mutations
where coverage is deemed high enough by these models to make a prediction.

Uniprot ID RITA Baselines
S M L XL ESM-1v MSA Transformer Tranception NR Tranception R EVE

A0A140D2T1 ZIKV 0.350 0.308 0.317 0.304 -0.064 0.465 0.268 0.346 0.366
A0A192B1T2 9HIV1 0.492 0.504 0.504 0.501 0.488 0.510 0.510 0.509 0.510
A0A1I9GEU1 NEIME -0.022 0.028 0.061 0.074 0.046 0.077 0.088 0.044 -0.004
A0A2Z5U3Z0 9INFA 0.456 0.518 0.502 0.525 0.485 0.326 0.528 0.545 0.529
A4D664 9INFA 0.329 0.386 0.404 0.398 0.026 0.333 0.404 0.393 0.409
A4GRB6 PSEAI 0.411 0.537 0.562 0.619 0.647 0.707 0.598 0.663 0.672
A4 HUMAN 0.322 0.276 0.312 0.300 0.309 0.394 0.364 0.452 0.301
AACC1 PSEAI 0.271 0.292 0.349 0.402 0.488 0.505 0.407 0.448 0.499
ADRB2 HUMAN 0.514 0.511 0.513 0.484 0.523 0.436 0.501 0.542 0.534
AMIE PSEAE 0.488 0.517 0.532 0.563 0.606 0.611 0.501 0.585 0.558
B3VI55 LIPST 0.284 0.389 0.431 0.454 0.483 0.535 0.491 0.468 0.436
BLAT ECOLX 0.564 0.556 0.546 0.524 0.646 0.681 0.489 0.627 0.682
BRCA1 HUMAN 0.389 0.397 0.495 0.499 0.442 0.402 0.538 0.574 0.322
C6KNH7 9INFA 0.394 0.369 0.371 0.373 0.420 0.408 0.401 0.445 0.435
CALM1 HUMAN 0.186 0.245 0.258 0.275 0.246 0.254 0.306 0.283 0.244
CAPSD AAV2S 0.191 0.250 0.269 0.279 0.196 0.350 0.492 0.473 0.346
CCDB ECOLI 0.142 0.076 0.029 0.210 0.426 0.489 0.309 0.456 0.490
CP2C9 HUMAN 0.596 0.593 0.603 0.581 0.623 0.596 0.595 0.652 0.625
DLG4 HUMAN 0.573 0.578 0.563 0.535 0.544 0.595 0.576 0.662 0.594
DLG4 RAT 0.381 0.390 0.377 0.371 0.565 0.507 0.304 0.446 0.523
DYR ECOLI 0.198 0.361 0.267 0.313 0.420 0.488 0.348 0.424 0.468
ENV HV1B9 0.380 0.358 0.408 0.419 0.415 0.380 0.404 0.407 0.388
ENV HV1BR 0.352 0.36 0.372 0.364 0.322 0.345 0.358 0.363 0.341
ESTA BACSU 0.122 0.199 0.283 0.301 0.304 0.428 0.263 0.325 0.375
F7YBW8 MESOW -0.076 -0.123 -0.105 -0.006 0.382 0.375 0.434 0.425 0.411
GAL4 YEAST 0.287 0.345 0.356 0.353 0.441 0.583 0.326 0.526 0.511
GCN4 YEAST 0.385 0.417 0.411 0.407 0.288 0.288 0.384 0.356 0.252
GFP AEQVI 0.080 0.108 0.182 0.096 0.099 0.652 0.631 0.677 0.679
GRB2 HUMAN 0.522 0.471 0.484 0.382 0.484 0.468 0.429 0.489 0.566
HIS7 YEAST 0.325 0.402 0.433 0.478 0.411 0.508 0.585 0.616 0.476
HSP82 YEAST 0.432 0.439 0.427 0.457 0.500 0.445 0.436 0.461 0.469
I6TAH8 I68A0 0.308 0.328 0.374 0.377 0.018 0.303 0.337 0.348 0.364
IF1 ECOLI 0.364 0.459 0.381 0.417 0.538 0.227 0.548 0.509 0.525
KCNH2 HUMAN 0.452 0.489 0.473 0.434 0.233 0.368 0.484 0.513 0.229
KKA2 KLEPN 0.296 0.425 0.538 0.556 0.614 0.576 0.584 0.584 0.597
MK01 HUMAN 0.220 0.129 0.099 0.053 0.183 0.153 0.034 0.139 0.251
MSH2 HUMAN 0.303 0.325 0.278 0.263 0.398 0.410 0.292 0.360 0.405
MTH3 HAEAE 0.358 0.491 0.625 0.677 0.701 0.687 0.673 0.655 0.710
NCAP I34A1 0.352 0.382 0.408 0.413 0.019 0.338 0.415 0.424 0.363
NRAM I33A0 0.583 0.633 0.584 0.571 0.162 0.519 0.551 0.621 0.584
NUD15 HUMAN 0.316 0.451 0.513 0.498 0.615 0.630 0.547 0.591 0.608
P53 HUMAN 0.364 0.484 0.478 0.448 0.487 0.396 0.388 0.461 0.495
P84126 THETH 0.415 0.506 0.477 0.552 0.546 0.631 0.533 0.541 0.567
PABP YEAST 0.640 0.666 0.667 0.693 0.665 0.662 0.641 0.689 0.639
PA I34A1 0.456 0.493 0.533 0.538 0.054 0.383 0.541 0.572 0.539
POLG CXB3N 0.328 0.382 0.374 0.369 -0.057 0.476 0.347 0.405 0.465
POLG HCVJF 0.390 0.434 0.443 0.487 0.605 0.600 0.525 0.577 0.614
PTEN HUMAN 0.242 0.404 0.382 0.389 0.436 0.491 0.341 0.459 0.501
Q2N0S5 9HIV1 0.507 0.418 0.398 0.348 0.496 0.490 0.412 0.492 0.496
Q59976 STRSQ 0.579 0.638 0.644 0.654 0.506 0.674 0.645 0.659 0.647
R1AB SARS2 0.214 0.259 0.274 0.289 -0.030 -0.037 0.216 0.401 0.600
RASH HUMAN 0.439 0.419 0.423 0.399 0.359 0.415 0.377 0.447 0.454
REV HV1H2 0.224 0.271 0.247 0.246 0.249 0.251 0.246 0.245 0.227
RL401 YEAST 0.384 0.522 0.488 0.436 0.288 0.392 0.355 0.397 0.395
SC6A4 HUMAN 0.420 0.410 0.400 0.411 0.472 0.509 0.400 0.465 0.489
SCN5A HUMAN 0.121 0.151 0.167 0.131 0.176 0.157 0.073 0.093 0.199
SPG1 STRSG 0.252 0.216 0.214 0.208 0.237 0.142 0.279 0.289 0.247
SPIKE SARS2 0.311 0.375 0.366 0.375 -0.043 0.471 0.369 0.342 0.347
SRC HUMAN 0.439 0.413 0.421 0.373 0.561 0.258 0.348 0.493 0.505
SUMO1 HUMAN 0.223 0.369 0.407 0.391 0.430 0.423 0.424 0.488 0.531
SYUA HUMAN 0.195 0.219 0.195 0.186 0.281 0.128 0.160 0.146 0.167
TADBP HUMAN 0.174 0.070 -0.018 -0.011 0.060 0.050 0.123 0.125 0.071
TAT HV1BR 0.378 0.363 0.396 0.399 0.342 0.310 0.206 0.244 0.337
TPK1 HUMAN 0.099 0.151 0.261 0.289 0.284 0.268 0.313 0.314 0.230
TPMT HUMAN 0.373 0.462 0.509 0.515 0.54 0.508 0.445 0.522 0.548
TPOR HUMAN 0.245 0.327 0.305 0.369 0.362 0.507 0.410 0.453 0.393
TRPC SACS2 0.425 0.558 0.499 0.568 0.606 0.629 0.551 0.585 0.577
TRPC THEMA 0.333 0.392 0.392 0.452 0.472 0.474 0.453 0.436 0.420
UBC9 HUMAN 0.237 0.438 0.473 0.452 0.479 0.503 0.433 0.485 0.538
UBE4B MOUSE 0.117 0.325 0.334 0.293 0.462 0.347 0.256 0.388 0.476
VKOR1 HUMAN 0.166 0.173 0.343 0.375 0.447 0.472 0.466 0.502 0.462
YAP1 HUMAN 0.180 0.177 0.160 0.168 0.281 0.071 0.218 0.359 0.438

Average 0.330 0.370 0.381 0.387 0.371 0.422 0.406 0.451 0.448



RITA: a Study on Scaling Up Generative Protein Sequence Models

Table 6. Fitness evaluation - ProteinGym indel benchmark: Spearman’s rank correlation between experimentally measured fitness
values for different proteins and the value predicted by the models. The Wavenet models are based on Shin et al. (2021). Tranception NR
and Tranception R (Notin et al., 2022) are variants without and with retrieval respectively.

Uniprot ID RITA Baselines
S M L XL Wavenet Tranception NR Tranception R

A0A1J4YT16 9PROT Davidi 2020 -0.169 0.185 0.207 0.210 0.117 0.178 0.191
B1LPA6 ECOSM Russ 2020 0.292 0.383 0.339 0.348 0.385 0.321 0.415
BLAT ECOLX Gonzalez indels 2019 0.436 0.455 0.334 0.345 0.546 0.296 0.357
CAPSD AAV2S Sinai indels 2021 0.253 0.319 0.453 0.463 0.699 0.563 0.598
HIS7 YEAST Pokusaeva indels 2019 0.638 0.656 0.677 0.684 0.457 0.549 0.586
P53 HUMAN Kotler deletions 2018 0.360 0.407 0.383 0.273 0.680 0.707 0.692
PTEN HUMAN Mighell deletions 2018 0.612 0.575 0.504 0.523 0.001 0.395 0.401

Average 0.346 0.426 0.414 0.406 0.412 0.430 0.463

B. Positional embedding ablation

Table 7. Ablating different positional embeddings: We evaluate Rotary Positional Embeddings (RoPE) as well as ALiBi by training a
small model for 3 billion amino acids. As shown, RoPE outperform ALiBi. However, we note that the training runs were stopped after a
short amount of time to save computational resources, and that larger scale ablation is needed for reliable results. We also note that the
training dataset differs from the one used for the main training runs, and that for this reason these results should not be directly compared
to those presented in Table 1.

SMALL-ROTARY SMALL-ALIBI

PERPLEXITY 12.43 13.08

C. Dataset Selection

Table 8. Ablating different datasets: We train small models for ∼ 3 GT to evaluate the use of different pre-training datasets. All model
are then evaluated on a combination of the datasets, and the results are shown below.

UNIREF-100 METACLUST MGNIFY

PERPLEXITY 14.28 14.62 15.34

D. Comparisons with ProtXLNet
A previous version of this paper contained faulty perplexity comparisons with ProtXLNet, after correspondence with the
authors we have decided to entirely remove comparisons with ProtXLNet from the main part of the paper, and provide a
fixed perplexity evaluation here, in the appendix . The goal of these comparisons was to contextualize our models compared
to similar previous models. However, the XLNet architecture is rather different to that of a decoder-only autoregressive
transformer. In table 9 we show the perplexity evaluation, with correctly computed values for ProtXLNet. Additionally in
this evaluation we have also removed all proteins of length less than one hundred amino acids.

E. Comparing perplexity across different vocabularies
Evaluating the perplexity of a model has long been standard practice in natural language processing. However, the traditional
way of computing the perplexity, per token, does not transfer across vocabularies. It is naturally much harder to predict the
correct next token in a large vocabulary of tens of thousands of tokens compared to a small vocabulary with only a few
dozens tokens to chose from.

In order to compare across vocabularies one must normalize the perplexity by the length of the untokenized sequence,
instead of the tokenized sequence. This metric is typically called the perplexity per byte, although for proteins it may be
more natural to call it the perplexity per amino-acid. If one merges tokens and assigns the probability of the merged tokens
as the joint probability of its constituents, the perplexity per byte will remain constant. This property allows fair comparisons
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Table 9. Perplexity evaluation: We evaluate generative protein models on the upstream modeling task by measuring the models
perplexity-per-byte on four different datasets. In all cases performance is correlated with model size and RITA-XL provides the best
results, highlighted in bold. We further note that both ProtGPT2 and ProtXLNet were trained on the Pfam families we held out of our
training set.

RITA BASELINES
DATASET SMALL MEDIUM LARGE XLARGE PROTGPT2 PROTXLNET

UNIREF-100 9.93 7.32 6.05 5.36 17.96 18.32
METACLUST 12.93 11.26 9.93 9.33 20.16 22.33
MGNIFY 12.90 11.33 10.03 9.21 19.97 22.52
PFAM HELDOUT 11.76 10.66 9.21 7.93 15.02 16.39

across vocabulary sizes. However, perplexity per byte also has its flaws: in redundant vocabularies, where each sequence
can be represented in multiple ways, the perplexity per byte will unjustly increase. In such a case the model needs to guess
which of all possible tokenizations corresponds to the target sequence. See Table 10 for an example.

While all common tokenizers are deterministic, meaning that the model should be able to learn which of the possible
tokenizations the tokenizer will chose, we hypothesize that this can be a difficult task when the length of each word grows
longer. For proteins, where there are no word boundaries, this may cause problems when using standard tokenizers, such as
BPE. In preliminary experiments using tokenization we saw improved results by breaking up the proteins into k-mers before
tokenization.

While perplexity per byte is the standard way to compare upstream performance across vocabularies we would like to
caution against reading too much into the exact values. Unfortunately, we are not aware of any better metric to compare
across vocabularies.

Table 10. Perplexity and vocabularies: Example of how the perplexity per token and the perplexity per byte change with vocabularies
given a uniform probabilities across the tokens in the vocabulary.

VOCAB VOCAB TYPE SEQUENCE PERPLEXITY PER TOKEN PERPLEXITY PER BYTE

A, B UNTOKENIZED A,B,B,A exp(− 4∗ln(0.5)
4

) = 2 exp(− 4∗ln(0.5)
4

) = 2

AA, BB, AB, BA TOKENIZED AB, BA exp(− 2∗ln(0.25)
2

) = 4 exp(− 2∗ln(0.25)
4

) = 2

A, B, AA, BB, AB, BA REDUNDANTLY TOKENIZED A, BB, A exp(− 3∗ln(0.167)
3

) = 6 exp(− 3∗ln(0.167)
4

) ≈ 3.83
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