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Abstract

Self-supervised neural language models (LMs)
with attention have recently been applied to bio-
logical sequence data, advancing structure, func-
tion and mutational effect prediction. Some pro-
tein LMs, including MSA Transformer and Al-
phaFold’s “EvoFormer”, take multiple sequence
alignments (MSAs) as inputs. We demonstrate
that simple, and universal, combinations of MSA
Transformer’s column attentions strongly corre-
late with Hamming distances between sequences
in MSAs. Therefore, MSA-based LMs encode
detailed phylogenetic relationships. We further
show that these models can separate coevolution-
ary signals encoding functional and structural con-
straints from correlations arising from historical
contingency. To assess this, we generate synthetic
MSAs, either without or with phylogeny, from
Potts models trained on natural MSAs. We find
that unsupervised contact prediction is substan-
tially more resilient to phylogenetic noise when
using MSA Transformer versus Potts models.

1. Introduction
Recently, self-supervised deep learning models based on
natural language processing methods, especially attention
and transformers, have been trained on large ensembles
of protein sequences by means of the masked language
modeling objective of filling in masked amino acids in
a sequence, given the surrounding ones (Elnaggar et al.,
2020; Rives et al., 2021; Rao et al., 2021a; Choromanski
et al., 2021; Madani et al., 2020; 2021). These models,
which capture long-range dependencies, learn rich repre-
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sentations of protein sequences, and can be employed for
multiple tasks (Meier et al.; Hawkins-Hooker et al., 2021;
Hie et al., 2022). Neural network architectures based on at-
tention are also employed in AlphaFold (Jumper et al., 2021),
RoseTTAFold (Baek et al., 2021) and RGN2 (Chowdhury
et al., 2021), and thus contributed to the recent breakthrough
in the supervised prediction of protein structure.

Protein sequences can be classified in families of homolo-
gous proteins, that descend from an ancestral protein and
share a similar structure and function. Analyzing multi-
ple sequence alignments (MSAs) of homologous proteins
thus provides substantial information about functional and
structural constraints. While most protein language neural
networks take individual amino-acid sequences as inputs,
some others have been trained to perform inference from
MSAs of evolutionarily related sequences. This second
class of networks includes MSA Transformer (Rao et al.,
2021b) and the “Evoformer” blocks in AlphaFold (Jumper
et al., 2021), both of which interleave per-sequence (“row”)
attention with per-site (“column”) attention. Such an archi-
tecture is conceptually extremely attractive because it can
incorporate coevolution in the framework of deep learning
models using attention. In the case of MSA Transformer,
simple combinations of the model’s row attention heads
have led to state-of-the-art unsupervised structural contact
predictions (Rao et al., 2021b), outperforming language
models trained on individual sequences, as well as Potts
models, also known in the field as DCA (Direct Coupling
Analysis) (Cocco et al., 2018).

In addition to coevolutionary signal caused by structural
and functional constraints, MSAs feature correlations that
directly stem from the common ancestry of homologous
proteins, i.e. from phylogeny. Does MSA Transformer learn
to identify phylogenetic relationships between sequences,
which are a key aspect of the MSA data structure? Is MSA
Transformer able to separate coevolutionary signals encod-
ing functional and structural constraints from phylogenetic
correlations arising from historical contingency?

Datasets and code for reproducing our analyses can
be found at https://github.com/Bitbol-Lab/
Phylogeny-MSA-Transformer, and further details
can be found in (Lupo et al., 2022).

https://github.com/Bitbol-Lab/Phylogeny-MSA-Transformer
https://github.com/Bitbol-Lab/Phylogeny-MSA-Transformer
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2. Results
2.1. Column attention heads capture Hamming

distances in separate MSAs

We first considered separately each of 15 different Pfam
seed MSAs (see Appendix A.1), corresponding to distinct
protein families, and asked whether MSA Transformer has
learned to encode phylogenetic relationships between se-
quences in its attention layers. To test this, we split each
MSA randomly into a training and a test set, and train a
logistic model based on the column-wise means of MSA
Transformer’s column attention heads on all pairwise Ham-
ming distances in the training set – see Appendix A.2 for
details. For all alignments considered, large regression coef-
ficients concentrate in early layers in the network, and single
out some specific heads consistently across different MSAs
– see Figure 1(a), first and second columns, for results on
four example MSAs. These logistic models reproduce the
Hamming distances in the training set very well, and suc-
cessfully predict those in the test set – see Figure 1(a), third
column, for results on four example MSAs. Quantitatively,
in all the MSAs studied, the coefficients of determination
(R2) computed on the test sets are above 0.84 in all our
MSAs – see Figure 1(b). A striking result from our anal-
ysis is that the regression coefficients appear to be similar
across MSAs – see Figure 1(a), first column. To quantify
this, we computed the Pearson correlations between the
regression coefficients learnt on “larger” seed MSAs (i.e.
on the 7 MSAs with ≥ 100 sequences and ≥ 30 residues).
The values of these correlations are between 0.69 and 0.87
(mean: 0.80), demonstrating that regression coefficients are
indeed highly correlated across these MSAs.

2.2. MSA Transformer learns a universal representation
of Hamming distances

Given the substantial similarities between our models
trained separately on different MSAs, we next asked whether
a common model across MSAs could capture Hamming dis-
tances within generic MSAs. To address this question, we
trained a single logistic model, based on the column-wise
means of MSA Transformer’s column attention heads, on
all pairwise distances within each of the first 12 of our seed
MSAs. We assessed its ability to predict Hamming distances
in the remaining 3 seed MSAs, which thus correspond to
entirely different Pfam families from those in the training
set. Figure 2 shows the coefficients of this regression (first
and second panels), as well as comparisons between predic-
tions and ground truth values for the Hamming distances
within the three test MSAs (last three panels). We observe
that large regression coefficients again concentrate in the
early layers of the model, but somewhat less than in indi-
vidual models. Furthermore, the common model captures
well the main features of the Hamming distance matrices

(a)

Family R2

PF00004 0.97
PF00005 0.99
PF00041 0.98
PF00072 0.99
PF00076 0.98
PF00096 0.94
PF00153 0.95
PF00271 0.94
PF00397 0.84
PF00512 0.94
PF00595 0.98
PF01535 0.86
PF02518 0.92
PF07679 0.99
PF13354 0.99

(b)

Figure 1. Fitting logistic models to predict Hamming distances
separately in each MSA. Each MSA is randomly split into a train-
ing set comprising 70% of its sequences and a test set composed
of the remaining sequences. (a) Regression coefficients are shown
for each layer and attention head (first column), as well as their ab-
solute values averaged over heads for each layer (second column).
For the test sets from four example MSAs (third column), ground
truth Hamming distances are shown in the upper triangle (blue)
and predicted Hamming distances in the lower triangle (green).
Darker shades correspond to larger Hamming distances. (b) R2 co-
efficients of determination for the predictions by each fitted model
on its respective test set.

in test MSAs. In Table 1, we quantify the quality of fit
for this model on all our MSAs. In all cases, we find very
high Pearson correlation between the predicted distances
and the ground truth Hamming distances. Furthermore, the
median value of the R2 coefficient of determination is 0.6,
confirming the good quality of fit. In the three shortest and
the two shallowest MSAs, the model performs below this
median, while all MSAs for which R2 is above median
satisfy M ≥ 52 and L ≥ 67. We also compute, for each
MSA, the slope of the linear fit when regressing the ground
truth Hamming distances on the distances predicted by the
model. MSA depth is highly correlated with the value of
this slope (Pearson r ≈ 0.95). This bias may be explained
by the under-representation in the training set of Hamming
distances and attention values from shallower MSAs, as
their number is quadratic in MSA depth.

(Rao et al., 2021b) showed that some column attention ma-
trices, summed along one of their dimensions, correlate with
phylogenetic sequence weights (see Appendix A.1). This
indicates that the model is, in part, attending to maximally
diverse sequences. Our study demonstrates that MSA Trans-
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Figure 2. Fitting a single logistic model to predict Hamming
distances. Regression coefficients (first panel) and their abso-
lute values averaged over heads for each layer (second panel) are
shown. For the three test MSAs, ground truth Hamming distances
are shown in the upper triangle (blue) and predicted Hamming
distances in the lower triangle (green) (last three panels).

Table 1. Quality of fit for our logistic model trained on Ham-
ming distances and column attentions from several MSAs. For
the logistic model described in Section 2.2, and for the MSAs in
the training set (plain font) and test set (boldface font), we report
(1) the R2 coefficient of determination for the model’s predictions,
(2) the Pearson correlation coefficient between predictions and
ground truth Hamming distances, and (3) the slope of the line of
best fit when regressing the ground truth Hamming distances on
the model’s predictions.

Family R2 Pearson Slope

PF00004 0.84 0.95 0.95
PF00005 0.72 0.92 0.75
PF00041 0.56 0.90 0.75
PF00072 0.66 0.90 0.71
PF00076 0.59 0.88 0.68
PF00096 0.57 0.88 0.73
PF00153 0.81 0.93 0.80
PF00271 0.77 0.93 1.11
PF00397 0.23 0.84 1.13
PF00512 0.77 0.93 0.94
PF00595 0.50 0.89 0.63
PF01535 0.54 0.86 1.18
PF02518 0.60 0.90 1.20
PF07679 0.28 0.85 0.57
PF13354 0.67 0.92 0.70

former actually learns pairwise phylogenetic relationships
between sequences, beyond these aggregate phylogenetic
sequence weights. It also suggests an additional mechanism
by which the model may be attending to these relationships,
focusing on similarity instead of diversity. Indeed, while
our regression coefficients with positive sign in Figure 2
are associated with (average) attentions that are positively
correlated with the Hamming distances, we also find several
coefficients with large negative values. They indicate the
existence of important negative correlations: in those heads,
the model is actually attending to pairs of similar sequences.
Besides, comparing our Figures 1(a) and 2 with Fig. 5 in
Ref. (Rao et al., 2021b) shows that different attention heads
are important in our study versus in the analysis of Ref. (Rao
et al., 2021b).

How much does the ability of MSA Transformer to capture

phylogenetic relationships arise from its training? To ad-
dress this question, we trained a common logistic model
as above to predict Hamming distances, but using column
attention values computed from a randomly re-initialized
version of the MSA Transformer network.1 The results ob-
tained in this case for our regression task are reported in
Table A2. They demonstrate that, although random initial-
ization can yield better performance than random guessing,2

the trained MSA Transformer gives vastly superior results.

For each layer and attention head in the network, MSA
Transformer computes one matrix of column attention val-
ues per site – see Equation (1). This is in contrast with row
attention, which is tied. Our results are more surprising that
they would be if the model’s column attentions were also
tied. Indeed, during pre-training, by tuning its row-attention
weight matrices to achieve optimal tied attention, MSA
Transformer “discovers” covariance between MSA sites in
early layers, and covariance between MSA sequences is
related to Hamming distance.3

2.3. MSA Transformer efficiently disentangles
correlations from contacts and phylogeny

MSA Transformer is known to capture three-dimensional
contacts through its (tied) row attention heads (Rao et al.,
2021b), and we have shown that it also captures Hamming
distances, and thus phylogeny, through its column attention
heads. How efficiently does MSA transformer disentan-
gle correlations from contacts and phylogeny? We address
this question in the concrete case of structure prediction.
Because correlations from contacts and phylogeny are al-
ways both present in natural data, we constructed controlled
synthetic data by sampling from Potts models, either in-
dependently at equilibrium, or along a phylogenetic tree
inferred from the natural MSA using FastTree 2 (Price
et al., 2010). The Potts models we used were trained on
each of 15 “full” natural MSAs (see Appendix A.1) using
the generative method bmDCA (Figliuzzi et al., 2018) – see
Appendix A.3. This setup allows us to compare data where
all correlations come from couplings (pure Potts model)
to data that comprises phylogenetic correlations on top of
these couplings. For simplicity, let us call “contacts” the top
scoring pairs of amino-acid sites according to the bmDCA
models used to generate our MSAs, and refer to the task of
inferring these top scoring pairs as “contact prediction”.

Examples of contact maps inferred by plmDCA (Ekeberg
et al., 2013) and by MSA Transformer for our synthetic

1We thank Tom Sercu for sharing details about MSA Trans-
former’s initialization with us.

2Some intuition for this result is provided by the Johnson–
Lindenstrauss Lemma and Gordon’s Theorem (Gordon, 1988).

3We thank Sergey Ovchinnikov for useful discussions on these
points.
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datasets are shown in Figure A1. For datasets generated
with phylogeny, more false positives, scattered across the
whole contact maps, appear in the inference by plmDCA
than in that by MSA Transformer. For both plmDCA and
MSA Transformer, we quantified the degradation in perfor-
mance caused by the injection of phylogeny by computing
the relative drop, ∆, in the area under the receiver operating
characteristic curve (ROC-AUC) for contact prediction. Re-
sults are reported in Table 2, for all Pfam families and for
two different cutoffs on the number of contacts. On average,
∆ is twice or three times (depending on the cutoff) higher
for plmDCA than for MSA Transformer. We checked that
these outcomes are robust to changes in the strategy used
to compute plmDCA scores. In particular, the average ∆
for plmDCA becomes even larger when we average scores
coming from independent models fitted on the 10 subsam-
pled MSAs used for MSA Transformer – thus using the
exact same method as for predicting contacts with MSA
Transformer (see Appendix A.3). The conclusion is the
same if 10 (or 6, for Pfam family PF13354) twice-deeper
subsampled MSAs are employed.

Table 2. Impact of phylogeny on contact prediction by plmDCA
and MSA Transformer. Ground truth contacts are defined as the
N or 2L pairs with top coupling scores, where L the length of the
MSA and N denotes the number of pairs of residues that have an
all-atom distance smaller than 8 Å in the experimental structure in
Table A1, excluding pairs at positions i, j with |i− j| ≤ 4.

∆ for N contacts ∆ for 2L contacts

Pfam ID plmDCA MSA Tr. plmDCA MSA Tr.

PF00004 0.33 0.04 0.34 0.11
PF00005 0.28 0.03 0.23 −0.01
PF00041 0.25 0.10 0.22 0.09
PF00072 0.23 0.10 0.14 0.08
PF00076 0.25 0.05 0.25 0.05
PF00096 0.39 0.21 0.41 0.30
PF00153 0.26 0.24 0.21 0.28
PF00271 0.32 0.07 0.29 0.10
PF00397 0.33 0.15 0.34 0.22
PF00512 0.21 0.08 0.20 0.08
PF00595 0.33 0.14 0.33 0.18
PF01535 0.23 0.05 0.18 0.01
PF02518 0.27 0.09 0.20 0.12
PF07679 0.26 0.05 0.19 0.05
PF13354 0.18 0.14 0.21 0.19

Average 0.27 0.10 0.25 0.12

These results demonstrate that contact inference by MSA
Transformer is less deteriorated by phylogenetic correlations
than contact inference by Potts models. This resilience
might explain the remarkable result that structural contacts
are predicted more accurately by MSA Transformer than by
Potts models even when MSA Transformer’s pre-training
dataset minimizes diversity (see Sec. 5.1 in Ref. (Rao et al.,
2021b)).

3. Discussion
MSA Transformer is known to capture structural contacts
through its (tied) row attention heads (Rao et al., 2021b).
Here, we showed that it also captures Hamming distances,
and thus phylogenetic information, through its column at-
tention heads. It makes sense, given that some correlations
between columns (i.e. amino-acid sites) of an MSA are
associated to contacts between sites, while similarities be-
tween rows (i.e. sequences) arise from relatedness between
sequences. Specifically, we found that simple combinations
of column attention heads, tuned to individual MSAs, can
predict pairwise Hamming distances between held-out se-
quences with very high accuracy. The larger coefficients in
these combinations are found in early layers in the network.
More generally, this study demonstrated that the regressions
trained on different MSAs had major similarities. This mo-
tivated us to train a single model across a heterogeneous
collection of MSAs, and this general model was still found
to accurately predict pairwise distances in test MSAs from
entirely distinct Pfam families. This result hints at a uni-
versal representation of phylogenetic relationships in MSA
Transformer.

Next, to test the ability of MSA Transformer to disentan-
gle phylogenetic correlations from functional and structural
ones, we focused on unsupervised contact prediction tasks.
Using controlled synthetic data, we showed that unsuper-
vised contact prediction is more robust to phylogeny when
performed by MSA Transformer than by inferred Potts mod-
els. Our finding that detailed phylogenetic relationships
between sequences are learnt by MSA Transformer, in addi-
tion to structural contacts, and in an orthogonal way, demon-
strates how precisely this model represents the MSA data
structure. Phylogenetic correlations are known to obscure
the identification of structural contacts by traditional co-
evolution methods, in particular by inferred Potts models,
motivating various corrections. From a theoretical point of
view, disentangling these two types of signals is a fundamen-
tally hard problem (Weinstein et al., 2022). In this context,
the fact that protein language models such as MSA Trans-
former learn both signals in orthogonal representations, and
separate them better than Potts models, is remarkable.

Here, we have focused on Hamming distances as a simple
measure of phylogenetic relatedness between sequences. It
would be very interesting to extend our study to other, more
detailed, measures of phylogeny. One may ask whether they
are encoded in deeper layers in the network than those most
involved in our study. Besides, we have mainly considered
attentions averaged over columns, but exploring in more de-
tail the role of individual columns would be valuable. More
generally, the ability of protein language models to learn
phylogeny raises the question of their possible usefulness to
infer phylogenies and evolutionary histories.
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A. Materials and methods
A.1. Datasets

For each of its families, the Pfam database4 provides an expert-curated “seed” alignment that contains a representative
set of sequences, as well as deeper “full” alignments that are automatically built by searching against a large sequence
database using a profile hidden Markov model built from the seed alignments. We considered 15 Pfam families, and for
each we constructed (or retrieved, see below) one MSA from its seed alignment – henceforth referred to as the seed MSA –
and one from its full alignment – henceforth referred to as the full MSA. For each family, we retrieved one experimental
three-dimensional protein structure from the PDB (https://www.rcsb.org). The seed MSAs were created by first
aligning Pfam seed alignments (Pfam version 35.0, Nov. 2021) to their HMMs using the hmmalign command from
the HMMER suite (http://hmmer.org, version 3.3.2), and then removing columns containing only insertions or
gaps. In the case of family PF02518, out of the initial 658 sequences, we kept only the first 500 in order to limit the
memory requirements of our computational experiments to less than 64GB. Of the full MSAs, six (PF00153, PF00397,
PF00512, PF01535, PF13354) were created from Pfam full alignments (Pfam version 34.0, Mar. 2021), removing columns
containing only insertions or gaps, and finally removing sequences where 10% or more characters were gaps. The remaining
nine full MSAs were retrieved from https://github.com/matteofigliuzzi/bmDCA (publication date: Dec.
2017) and were previously considered in Ref. (Figliuzzi et al., 2018). We computed the effective depth of each MSA as
M

(δ)
eff :=

∑M
i=1 wi, with wi := |{i′ : dH(x(i),x(i′)) < δ}|−1, where M is the depth of the MSA, x(i) is the i-th sequence

in the MSA, dH(x,y) is the (normalized) Hamming distance between two sequences x and y (i.e. the fraction of sites
where the amino acids differ), and we set δ = 0.2. While M

(0.2)
eff /M can be as low as 0.06 for our full MSAs, this ratio is

close to 1 for all seed MSAs. Information about our MSAs is summarized in Table A1.

Table A1. Pfam families and MSAs used in this work. L denotes the length of an MSA, M its depth, and M
(0.2)
eff its effective depth.

Seed MSA Full MSA PDB structure

Pfam ID Family name L M L M M
(0.2)
eff ID Resol.

PF00004 AAA 132 207 132 39277 9050 4D81 2.40 Å
PF00005 ABC tran 137 55 137 68891 43882 1L7V 3.20 Å
PF00041 fn3 85 98 85 42721 17783 3UP1 2.15 Å
PF00072 Response reg 112 52 112 73063 40180 3ILH 2.59 Å
PF00076 RRM 1 68 70 69 51964 20276 3NNH 2.75 Å
PF00096 zf-C2H2 23 159 23 38996 12581 4R2A 1.59 Å
PF00153 Mito carr 97 160 94 93776 17860 1OCK 2.20 Å
PF00271 Helicase C 111 421 111 66809 25018 3EX7 2.30 Å
PF00397 WW 31 448 31 39045 3361 4REX 1.60 Å
PF00512 HisKA 67 265 66 154998 67303 3DGE 2.80 Å
PF00595 PDZ 82 44 82 71303 4053 1BE9 1.82 Å
PF01535 PPR 31 458 31 109064 37514 4M57 2.86 Å
PF02518 HATPase c 112 500 111 80714 59190 3G7E 2.20 Å
PF07679 I-set 90 48 90 36141 14611 1FHG 2.00 Å
PF13354 Beta-lactamase2 215 76 198 4642 3535 6QW8 1.10 Å

A.2. Supervised prediction of Hamming distances

We used the pre-trained MSA Transformer model introduced in Ref. (Rao et al., 2021b), retrieved from the Python Package
Index as fair-esm 0.4.0. We recall that this model comprises 12 successive layers of 12 axial attention blocks. The
axial attention blocks are executed in parallel within each layer, and consist of a tied row attention block, followed by a
column attention block and, finally, by a feed-forward network – see Ref. (Rao et al., 2021b) for details. When receiving an
MSA with L columns and M rows as input, the model computes, for each layer 1 ≤ l ≤ 12, for each head 1 ≤ h ≤ 12, and
for each MSA column j (plus an additional “beginning-of-sentence” position corresponding to j = 0), a M ×M column
attention matrix A

(l,h)
j . We predict the Hamming distance y between the i-th and the i′-th sequence, in an MSA M of length

L, using the entries a(l,h)i,i′ at position (i, i′) (henceforth a(l,h) for brevity) from the 144 matrices

A(l,h) :=
1

2(L+ 1)

L∑
j=0

(
A

(l,h)
j +A

(l,h)
j

T
)
, with 1 ≤ l ≤ 12 and 1 ≤ h ≤ 12. (1)

4https://pfam.xfam.org/
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We fit fractional logit models via quasi-maximum likelihood estimation using the statsmodels package.5 Namely, we
model the relationship between the Hamming distance y and the aforementioned symmetrised, and averaged, attention values
a = (a(1,1), . . . , a(12,12)), as E[y |a] = Gβ0,β(a), with Gβ0,β(a) := σ(β0 + aβT), where E[ · | · ] denotes conditional
expectation, σ(x) = (1 + e−x)−1 is the standard logistic function, and the coefficients β0 and β = (β1, . . . , β144) are
determined by maximising the sum of Bernoulli log-likelihoods ℓ(β0,β |a, y) := y log[Gβ0,β(a)] + (1 − y) log[1 −
Gβ0,β(a)], evaluated over a training set of observations of y and a. We refer to these models simply as “logistic models”.

Using data from our seed MSAs (cf. Table A1), we performed two types of regression tasks. In the first one, we randomly
partitioned the set of row indices in each separate MSA M into two subsets IM, train and IM, test, with IM, train containing
70% of the indices. We then trained and evaluated one model for each M, using as training data the Hamming distances,
and column attentions, coming from (unordered) pairs of indices in IM, train, and as test data the Hamming distances, and
column attentions, coming from pairs of indices in IM, test. The second type of regression task was a single model fit over a
training dataset consisting of all pairwise Hamming distances, and column attentions, from the first 12 of our 15 MSAs. We
then evaluated this second model over a test set constructed in an analogous way from the remaining 3 MSAs.

A.3. Synthetic MSA generation via Potts model sampling along inferred phylogenies

We inferred unrooted phylogenetic trees from our full MSAs (see Appendix A.1), using FastTree 2.1 (Price et al.,
2010) with its default settings.6 Then, we fitted Potts models on each of these MSAs using bmDCA (Figliuzzi et al., 2018)
(https://github.com/ranganathanlab/bmDCA) with its default hyperparameters. The choice of bmDCA is
motivated by the fact that, as has been shown in Refs. (Figliuzzi et al., 2018), model fitting on natural MSAs using Boltzmann
machine learning yields Potts models with good generative power. This sets it apart from other DCA inference methods, e.g.
pseudo-likelihood DCA (plmDCA) (Ekeberg et al., 2013), which is the DCA standard for contact prediction but cannot
faithfully reproduce empirical one- and two-body marginals.

Let M denote an arbitrary MSA from our set of full MSAs, L its length, and M its depth. Using the phylogenetic tree and
Potts model inferred by bmDCA from M, we generated a synthetic MSA without phylogeny by equilibrium Markov Chain
Monte Carlo (MCMC) sampling from the inferred Potts model, using a Metropolis–Hastings algorithm in which each step
consists of a proposed move (“mutation”) in which a site i in a sequence of L amino-acid is chosen uniformly at random,
and its state may be changed into another state chosen uniformly at random. We started from a set of M randomly and
independently initialized sequences, and proposed a total number N of mutations on each sequence independently. Suitable
values for N are estimated by bmDCA during its training, to ensure that Metropolis–Hastings sampling reaches thermal
equilibrium after N steps when starting from a randomly initialized sequence (Figliuzzi et al., 2018). We thus used the
value of N estimated by bmDCA at the end of training.

We also generated synthetic data using MCMC sampling along our inferred phylogenetic trees. We started from an
equilibrium ancestor sequence sampled as explained above, and placed it at an arbitrary root (root placement does not matter;
see below). Then, we evolved this sequence by successive duplication (at each branching of the tree) and mutation events
(along each branch). Mutations were modeled using for acceptance the standard Metropolis criterion given the inferred Potts
model Hamiltonian. As the length b of a branch gives the estimated number of substitutions that occurred per site along
it (Price et al., 2010), we generate data by making a number of accepted mutations on this branch equal to the integer closest
to bL. Our procedure for generating MSAs along a phylogeny is independent of the placement of the tree’s root. Indeed, a
tree’s root placement determines the direction of evolution; hence, root placement should not matter when evolution is a
time-reversible process. That evolution via our mutations and duplications is a time-reversible process is a consequence of
the fact that we begin with equilibrium sequences at the (arbitrarily chosen) root.

Assessing performance degradation due to phylogeny in coupling inference. DCA methods and MSA Transformer
both offer ways to perform unsupervised inference of structural contacts from MSAs of natural proteins. In the case of
DCA, the established methodology is to (1) learn fields and couplings by fitting the Potts model, (2) change the gauge to
the zero-sum gauge, (3) compute the Frobenius norms, for all pairs of sites (i, j), of the coupling matrices (eij(x, y))x,y,
and finally (4) apply the average product correction (APC) (Dunn et al., 2008), yielding a coupling score Eij . Top scoring
pairs of sites are then predicted as being contacts. In the case of MSA Transformer (Rao et al., 2021b), a single logistic

5https://www.statsmodels.org
6Our use of FastTree is motivated by the depth of the full MSAs, which makes it computationally prohibitive to employ more precise

inference methods. Deep MSAs are needed for our analysis, which relies on fitting Potts models accurately.
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regression (shared across all possible input MSAs) was trained to regress contact maps from a sparse linear combination
of the symmetrized and APC-corrected row attention heads. We applied these inference techniques, normally used to
predict structural contacts, on our synthetic MSAs generated without and with phylogeny. As proxies for structural
contacts, we used the pairs of sites with top coupling scores in the Potts models used to generate the MSAs. As a DCA
method to infer these coupling scores, we used plmDCA (Ekeberg et al., 2013) as implemented in the PlmDCA package
(https://github.com/pagnani/PlmDCA), which is the state-of-the-art DCA method for contact inference. We
fitted one plmDCA model per synthetic MSA, using default hyperparameters throughout (we verified that these settings led
to good inference of structural contacts on the original full MSAs by comparing them to the PDB structures in Table A1).

While Potts models need to be fitted on deep MSAs to achieve good contact prediction, MSA Transformer’s memory
requirements are too large for us to run it on any of our synthetic MSAs in its entirety. Instead, we subsampled each synthetic
MSA 10 times, by selecting each time a number Msub of row indices uniformly at random, without replacement. We used
Msub ≈ 380 for family PF13354 due to its greater length, and Msub ≈ 500 for all other families. Then, we computed
for each subsample a matrix of coupling scores using MSA Transformer’s row attention heads and the estimated contact
probabilities from the aforementioned logistic regression. Finally, we averaged the resulting 10 matrices to obtain a single
matrix of coupling scores.

B. Common logistic model using MSA Transformer with random weights

Table A2. We reinitialized MSA Transformer’s parameters to random values, using the protocols originally used in pre-training (see
Section 2.2). Results for the same task as in Table 1 are shown.

Family R2 Pearson Slope

PF00004 0.31 0.67 1.60
PF00005 0.33 0.59 0.96
PF00041 0.02 0.43 1.02
PF00072 0.45 0.67 1.07
PF00076 0.30 0.56 1.10
PF00096 -0.13 0.24 0.52
PF00153 0.07 0.32 0.66
PF00271 0.13 0.46 1.25
PF00397 -0.31 0.39 1.19
PF00512 0.02 0.35 0.73
PF00595 0.49 0.70 1.09
PF01535 -0.17 0.20 0.63
PF02518 -0.09 0.32 1.07
PF07679 0.29 0.57 0.91
PF13354 0.35 0.62 1.15

C. Contact prediction on synthetic MSAs

Figure A1. Predicted contact maps using plmDCA and MSA Transformer on synthetic MSAs, versus ground truth “contact maps”
defined by top Potts model couplings, for Pfam family PF00595. “Contact maps” containing 2L contacts, and obtained from the
ground-truth couplings in the bmDCA model used to generate the synthetic MSAs either without phylogeny (“Equilibrium”) or with
phylogeny (“Tree”) – see Appendix A.3 – are displayed in the upper-triangular portions of each panel. In the lower-triangular portions, we
display the 2L top-scoring pairs according to plmDCA or MSA Transformer, when performing contact inference in each case. Light
blue squares represent true positive predictions, dark blue squares false negative predictions, and red squares false positive predictions.
For each predicted contact map, we report the positive predictive value (PPV) given these choices, as well as the median distance (MD),
expressed in Å, between predicted pairs in the reference experimental 3D structure (see Table A1).

https://github.com/pagnani/PlmDCA

