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Abstract

Cellular dynamics are fundamentally governed
by networks of interacting genes, and inferring
these interactions from data is a central problem
in systems biology. Gene expression profiling
at single-cell resolution is now routine, allowing
for heterogeneity of cell state to be studied at
scale. In contrast, the vast majority of network
inference methods work at the population level
to construct a static gene regulatory network, and
thus do not allow for inference of differential reg-
ulation across sub-populations. Building upon
recent inference methods that model single cell
dynamics using drift-diffusion processes, we pro-
pose a method for inferring cell-specific causal
networks and show some preliminary results.

1. Introduction

Identifying and characterizing gene regulatory interactions
is one of the end goals of modern transcriptomic studies.
Over the last decade, molecular profiling at single cell res-
olution has become standard. An oft-cited advantage of
single cell assays is that heterogeneous population struc-
ture is preserved, allowing for the detection and study of
rare cellular phenotypes that would be unobservable from
bulk studies (Buettner et al., 2015). The single cell “rev-
olution” has spurred rapid advances in data analysis and
modelling methods such as trajectory inference (Tritschler
et al., 2019), dimensionality reduction and data integration.
However, to date the majority of gene regulatory network in-
ference methods aim to reconstruct a static network (Pratapa
et al., 2020) that describes the set of possible interactions oc-
curring within an observed population. Given the biological
importance of cellular heterogeneity, a natural expectation
is that variations in transcriptional state may correspond to
variations in (cell state dependent) regulatory interactions
which cannot be represented as static networks (Stumpf,
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Recent works have dealt with cell-specific networks, where
multiple networks are learned from a single-cell popula-
tion, thus allowing for variations in learned regulatory re-
lationships across a dataset (Akers & Murali, 2021). Such
methods leverage neighbourhood or cluster information to
construct networks that are cell- or context-specific. To our
knowledge, existing works have focused on inferring undi-
rected networks (Zhang et al., 2022; Wang et al., 2021). If
we hope to infer causal interactions, then information about
underlying dynamics in a cell population is essential. The
problem of estimating dynamics from data is a well stud-
ied problem, and we appeal to the corresponding literature
(Teschendorff & Feinberg, 2021; Ding et al., 2022).

2. Method

Since we aim at inferring cell-specific networks, it is nec-
essary to avoid coarse-graining of cell states as much as
possible. Hence, we will avoid trajectory inference meth-
ods that require clustering or smoothing of cell states. We
restrict our focus to a class of methods that model the dy-
namics as a Markov, drift-diffusion process over a manifold
of cell states (Weinreb et al., 2018; Lange et al., 2022). Let
X = {z;}, be a sample of a population of cells, where
x; € RM is the vector of mRNA expression values for cell
i. Let M be a graph constructed from X that approximates
some underlying manifold of cell states (Moon et al., 2018).
We assume we have access to a transition matrix P € RV*N
that is supported on M and adequately describes the “true’
dynamics of the biological process on the manifold (in prac-
tice, as we do in Section 3, one could use a variety methods
in the recent literature to estimate P). Then M equipped
with P encodes a discrete Markov chain that approximates
the dynamical process in some sense. In what follows, we
will write [n] = {1,...,n} forn e N.

>

Restricted Directed Information For any cell z € M,
we can construct (e.g. by a truncated Gaussian) a probability
distribution supported on its neighbourhood, 7. One may
then consider a Markov process X;,¢ > 0 started from
Xo ~ w3 and evolving under P. For some fixed ¢, the
resulting coupling is

(X0, X¢) ~ diag(n§)P' =: 77 (D
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Denote by a pair of genes (7, k) the causal relationship j —
k. We aim to quantify the restricted directed information

argminy £(X; L, G) where

N
(RDI) (Rahimzamani & Kannan, 2016) from knowledge of AN } Ny, A2 ﬁ T
the coupling 77 and gene expression states: LX; L, G) = 2 Z wil Xi: = Gillz + 2 tr(X LX)
t =1
. . N
RDI(Xo[j] — X.[k]) = I(Xols], XHIXo[K]), @) 3 el
i=1
where I(X,Y|Z) := Ex v,z [log pxy|z — log(px|z ® py|z)] 4)

is the conditional mutual information, and X;[j] is the
expression of gene j in cell X;. Doing this for all cells
x; € M and gene pairs j, k € [M], we arrive at a tensor
G € RNVXM*M guch that Gy, is the RDI score of j — k
in cell x;.

Since the RDI score matrix C;‘l for each cell is learned from
a relatively small local neighbourhood, it is potentially ex-
tremely noisy. Furthermore, it is impractical (due to limited
data and computational resources) to condition on poten-
tial confounders (Qiu et al., 2020). Thus, RDI scores may
contain noise and undesirable signal resulting from indi-
rect interactions. To deal with this, we first filter interaction
scores using context likelihood of relatedness (CLR) (Madar
et al., 2010) and then solve a manifold-regularized optimiza-
tion problem to both denoise the interaction signals and
attenuate signal arising from indirect interactions (Qiu et al.,
2020; Zhang et al., 2022).

Context likelihood of relatedness. Given a (generally
dense) matrix of RDI scores (3, we employ the context
likelihood of relatedness (CLR) algorithm (Madar et al.,
2010) to produce a filtered matrix G as follows. For each
pair of genes (i, j), compute z; (resp. z;) to be the z-score
of G;; with respect to G;. (resp. G.;). Then we define the
CLR score for (i, j) to be

Gij = %\/maX(O, z;)? + max(0, z;)2. 3)

Applying CLR filtering along the first axis of G, we obtain
the filtered tensor G. We remark that we have made a modi-
fication to the original approach of (Madar et al., 2010) here,
namely that we weight the CLR score by the initial MI value
Gij. This is important since CLR was originally designed
to filter interactions in static networks. In the setting of
cell-specific networks, very few edges may be “active” in a
given cell’s context, and so entire rows or columns of G may
consist only of noise. Computing z-scores along those rows
or columns would put both noise and signal on the same
scale, hence we choose to weight by the original value.

Smoothing and denoising The tensor G contains a noisy
matrix of interaction scores, one for each measured cell.
For notational convenience we will matricize G to form
G e RVXM? e eachrow is a length-M? unfolded score
matrix. We propose to solve the optimization problem G =

A1, A2 are hyperparameters that control regularization
strength, and L is the graph Laplacian of M. The term
associated to \; is a Laplacian regularization correspond-
ing to an assumption that regulatory relationships should
vary smoothly with changes in cell state, i.e. tr(X " LX) is
large for rapidly fluctuating X. The term associated to Ao
is a Lasso term that encourages X to be sparse. This is a
standard assumption about the nature of biological networks
(Zhang et al., 2022). Together, the objective (4) encour-
ages both parsimony and sharing of information along the
manifold. The problem is a case of L1-L2-regularized least
squares, and can be solved using a simple alternating scheme
which we describe in the appendix.

Using a backward transition matrix Since in the above
we consider couplings of the process at times (0, t), esti-
mates of the MI scores will be biased by some time lag. In
order to remedy this, we must instead consider couplings
for times (—t,t). Rigorously speaking, time-reversal of
a diffusion-drift process away from equilibrium is not al-
ways well-posed. In practice however, backward operators
in some sense have been constructed by transposing the
transition matrix (Lange et al., 2022; Li et al., 2020) (see
Appendix A.1 for further discussion). Given an approx-
imate backward operator (), a time-symmetric coupling
¥ = (QT)! diag(m&) P* can be constructed.

3. Results

Overview We now discuss an example in which we seek
to infer cell-specific networks from simulated single-cell
data. In particular, we are interested in the scenario where
a single, static network does not satisfactorily describe the
true interactions. Consider the network in Figure 1(a, b),
where a bifurcation driven by a toggle-switch feeds into
one of two “modules”. Modules A and B involve the same
genes {6, 7,8, 9}, but with completely different interactions
between the species: the flow of information in each module
is the mirror image of the other.

A static network (in the graphical sense) is insufficient to
describe this system, since the directionality of some inter-
actions may be dependent on the context. Consider gene 7,
which may either be activated by gene 6 (in module A) or
by gene 8 (in module B). This could conceivably be under-
stood to be a hyperedge, since a corresponding Boolean rule
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Figure 1. Example network. (a) 5-gene bifurcation structure feed-
ing into two modules A, B involving the same 4 genes. (b) 4-gene
modules A, B each involving different regulatory interactions. (c)
tSNE embedding of simulated cell profiles, colored by cluster.

would be

g7 < (g6 A (g4 A —g5)) v (g8 A (—g4 A g5)).

Short of attempting to perform rigorous inference for higher-
order interactions, cell-specific networks allow us to disen-
tangle interactions for a certain subclass of higher-order
interactions: those which can be understood to be locally
first-order, conditional on some latent variable that is en-
coded in the cellular context. Finally, since existing cell-
specific network inference methods (Zhang et al., 2022;
Wang et al., 2021) infer undirected edges only, such meth-
ods are unable to distinguish the direction of causality in
this example.

Simulation We simulated the network of Figure 1 using
the BoolODE software package (Pratapa et al., 2020). This
uses a chemical Langevin scheme for simulating biologi-
cally plausible expression dynamics: dX; = f(X;)dt +
g(X:)dB; where f, g have specific forms dictated by the
reaction network. From 1,000 independent realizations of
the system, we produced a set of 1,000 sampled cells by
sampling a cell state from each trajectory at a time chosen
uniformly at random. As a measure of ground truth inter-
actions for each cell z;, we computed the corresponding
Jacobians J;ji, = 0; fr(z;).

Inferring dynamics As an input, our method requires a
cell-state transition matrix P. This can be estimated using
a number of methods in practice. In our case, we construct
P from transcriptomic velocity (“RNA velocity””) measure-
ments as follows. For each observed cell x;, we calculate
the corresponding velocity vector v; = f(x;). From this,
we may write P;; = Z~exp((x; —x;,vi)/0)1{j € NTi]},
where Z is the appropriate normalizing constant and 1 de-
notes a 0-1 indicator. We set A" to be the k-NN neighbour-
hood with k = 25, and took ¢ = 0.5 (Li et al., 2020).

Recovering causality We applied the method of Section
2 with a backward matrix obtained via the transpose (see
Section A.l), fort = 3, Ay = 25.0, A2 = 0.025. For
construction of the neighbourhood 7§ we used quadratic op-
timal transport (Matsumoto et al., 2022), which produces a
local neighbourhood density similar to a truncated Gaussian.
In Figure 2(a), we show the cell-specific networks averaged
over the clusters delineated in Figure 1(c). We observe that
the the denoised result G resembles the ground truth. Fur-
thermore, the averaged networks for module A and module
B are directed and reflect the mirrored casual relationships
described in Figure 1(b). Averaging networks is convenient
for summarizing the inference output for cell-specific net-
works, but in Figure 2(b) we show the interaction scores for
a subset of edges on genes 6-9. It is clear visually that re-
versing the direction of each edge corresponds to switching
branches in the tSNE embedding. Our method is able also
to resolve the temporal behaviour of some interactions. For
instance, the interaction 7 — 8 is active along its branch
first when expression of gene 7 leads to activation of gene
8, and later when gene 7 is switched off, leading to gene 8
being switched off.

Cell-specific edge detection Finally, we consider the gen-
eral problem of cell-specific edge detection. For each triple
(i,7,k) with i € [N], 4,k € [M] we treat the problem of
detecting in cell z; an edge j — k as a binary classifica-
tion problem with some threshold ¢g. To construct the set
of true positives, we consider the matrix I1.J, where Il is a
neighbourhood transition matrix such that IT;. = mg*. The
motivation for considering this instead of simply .J is as
follows: cell-specific interactions are necessarily inferred
by leveraging neighbourhood information, and so strict cell-
wise comparison to a ground truth would be overly stringent
and sensitive to small perturbations in the expression space.
By computing R.J, the ground truth signal is smoothed over
the same neighbourhood allowing for more robust assess-
ment of classifiers. Subsequently, we classified all edges
where (RJ);;x > 0.5 to be a “true” edge, and the fraction
of edges was 4%.

In Figure 3, we show the Precision:Recall (PR) curves cal-
culated from the raw RDI scores G and the smoothed, de-
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Figure 2. (a) Top: true interactions averaged by cluster; Middle:
G averaged by cluster; Bottom: G averaged by cluster.(b) Interac-
tions corresponding to modules A and B shown for each cell on
the tSNE embedding.

noised scores G respectively. In addition to the velocity
kernel considered previously, we also considered kernels
constructed using optimal transport (Zhang et al., 2021),
population balance analysis (Weinreb et al., 2018) and dif-
fusion pseudotime (Haghverdi et al., 2016). Furthermore,
we considered the following baselines: reversed velocity
(this should result in reversal of causality), undirected (pure
diffusion, resulting in loss of temporal information), and
random predictor (edges predicted at random with proba-
bility 0.04). See Appendix A.3 for hyperparameter choices.
Comparing the AUPR for G to those for G, it is imme-
diately clear that the filtering, smoothing and denoising
steps result in an increased AUPR, i.e. improved detection
ability for cell-specific edges. This can be understood as
a combined effect of (1) removal of indirect interactions
using the CLR algorithm, and (2) sharing of information

Figure 3. Precision-Recall (PR) curves for cell-specific edge de-
tection from G (raw RDI values) or G (smoothed and denoised)
various choices of transition kernel reconstruction. Area under PR
curve (AUPR) is shown.

along the cellular manifold and attenuation of noise using
the smooth and sparse optimisation. The velocity kernel
performs best (AUPR 0.403), followed by StationaryOT
(AUPR 0.366). This is in keeping with the observation of
(Qiu et al., 2020) that velocity estimates contain information
about the true temporal coupling of cells. Reassuringly, both
the undirected kernel and reversed velocity kernel perform
very poorly (AUPR 0.041, 0.043 respectively). This reflects
the fact that the kernel must accurately encode temporal
information if causal interactions are to be inferred.

4. Conclusion

Motivated by recent developments in dynamical inference
for single-cell data, we have presented a framework which
enables reconstruction of cell-specific, causal networks.
Given a transition kernel that approximates underlying cel-
lular dynamics, our method relies on computing the Re-
stricted Directed Information (RDI) (Rahimzamani & Kan-
nan, 2016) for pairs of genes to measure causal relationships
and makes no assumptions on linearity of interactions nor
the distribution of gene expression counts. We plan to next
investigate methods for filtering cell-specific networks to
remove indirect edges, and regression methods for sharing
information across the cellular manifold. We will also inves-
tigate other measures of causality, such as Granger causality
(Qiu et al., 2020), with which one might hope to infer edges
that are both directed and signed.
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A. Appendix
A.1. Constructing a backward operator
It is straightforward to write:

P[Xo = 25| X_s = 2,]P[X_s =
Qz] _ P[X_t _ x‘]‘XO _ xl] _ [ 0 xZ| t x]] [ t x]]

P[XU = (El]
_(PY);P[X oy = 4]
P[Xo = ;]

If P encoded a reversible Markov chain and we chose P[X_; = -] to be the stationary distribution, this would give us
time-reversal at equilibrium. Since we are interested in the behaviour of the process away from equilibrium, we must
prescribe P[X_; = -] away from equilibrium. In practice, we find that taking P[X_; = -] = Unif works well — this is
equivalent to simply taking the transpose of P and rescaling, as done in (Lange et al., 2022).

We refer the reader to the analysis presented in Section 4.3 of (Li et al., 2020) for a more detailed discussion on the transpose
as a backward operator and its interpretation in the continuous limit.
A.2. Smooth and sparse optimization

The problem (4) is convex and a straightforward numerical algorithm for its solution can be derived using the alternating
direction method of multipliers (ADMM) (Boyd et al., 2011). With auxiliary variables W, Z with the same dimensions as
X, the corresponding ADMM scheme is

XEHD = (o + ML+ pI) " HaG + p(Z2%) — wk))) (5)
Z*+D) — arg min A2 Z |1 + gHX(k“) —zZ® L w2 = prOXp—l)\2H.H1(X(k+l) + W) (6)
W(k+1) — W(k‘) + X(k‘+1) _ Z(k-‘rl) (7)

where p > 0 is the ADMM relaxation parameter (we take this to be 0.05), o = diag(w) and

proxy|., (z) = sgu(@)(|z] — M)+,

interpreted elementwise.

A.3. Parameter choices for transition kernel reconstruction

Velocity kernel As described in the main text, the velocity kernel was constructed from evaluations of the drift term of
the chemical Langevin SDE using the cellrank.tl.kernels.DotProductScheme class within CellRank (Lange
et al., 2022), with 0 = 0.5 and k = 25. A reversed-velocity kernel was constructed by swapping the roles of P (the forward
kernel) and @) (the reverse kernel).

Optimal transport kernel Cells in the top 5% of pseudotime in each branch were assigned a negative flux rate. R; so that
each branch had a net negative flux of —12.5. Remaining cells were assigned a positive flux rate to satisfy the zero net flux
requirement, . R; = 0. StationaryOT (Zhang et al., 2021) with quadratically regularized optimal transport was applied
with At = 1.0,¢ = 0.05. The cost matrix was taken to be the matrix of pairwise graph distances constructed from a k-NN
graph of the example dataset with k = 25.

Population balance analysis (PBA) kernel PBA (Weinreb et al., 2018) was applied with the same flux rates R; as used in
the optimal transport kernel, with neighbours k£ = 25 and diffusivity D = 5.0.

Diffusion pseudotime Kkernel The diffusion pseudotime (DPT) kernel was constructed using the
cellrank.tl.kernels.PseudotimeKernel class within CellRank.

Undirected kernel We chose P = @@ = II, where II is the neighbourhood kernel constructed using quadratically
regularized optimal transport (Matsumoto et al., 2022).



