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Abstract

Graph representation learning has recently
emerged as a promising approach to solve pharma-
cological tasks by modeling biological networks.
Among the different tasks, drug repurposing, the
task of identifying new uses for approved or in-
vestigational drugs, has attracted a lot of atten-
tion recently. In this work, we propose a node
embedding algorithm for the problem of drug re-
purposing. The proposed algorithm learns node
representations that capture the influence of nodes
in the biological network by learning a mass term
for each node along with its embedding. We ap-
ply the proposed algorithm to a multiscale inter-
actome network and embed its nodes (i. e., pro-
teins, drugs, diseases and biological functions)
into a low-dimensional space. We evaluate the
generated embeddings in the drug repurposing
task. Our experiments show that the proposed
approach outperforms the baselines and offers an
improvement of 53.33% in average precision over
typical walk-based embedding approaches.

1. Introduction
Recently, there is a growing interest in representing
data from different domains in the form of graphs. In-
deed, graphs arise naturally in many application domains
such as in chemoinformatics (Kearnes et al., 2016), in
physics (Battaglia et al., 2016), and in natural language
processing (Nikolentzos et al., 2020). In many cases, ma-
chine learning techniques need to be applied to graph-
structured data. For instance, some common applications
include predicting the estimated time of arrival in Google
Maps (Derrow-Pinion et al., 2021), recommending friends
in social media (Fan et al., 2019) and predicting the quantum
mechanical properties of molecules (Gilmer et al., 2017),
just to name a few. These learning tasks focus on different
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components of graphs such as nodes, edges or subgraphs.
For example, common node- and edge-level tasks include
predicting the biological state of a protein in a protein-
protein interaction network and discovering the type of the
relationships between entities in a knowledge graph, respec-
tively.

Traditionally, biology is one of the richest sources of graph-
structured data. Protein-protein interaction networks are
perhaps the most representative examples of such graphs.
Complex diseases usually disrupt several of the proteins in
these networks (Huttlin et al., 2017). A drug that needs to
reach the proteins disrupted by the disease usually binds
a single target protein. Through the interactions between
proteins, it can eventually affect those proteins that were
disrupted by the disease (Barabási et al., 2011). Those
interactions can be modeled as a graph. This graph can
serve as the main tool one can use to investigate the effects
of disease treatments and their benefits, i. e., the efficacy of
drugs (Guney et al., 2016), their side effects (Zitnik et al.,
2018), etc. An example of such a graph is the multiscale
interactome network (Ruiz et al., 2021) which was built to
capture the biological principles of effective treatments and
which consists of disease-perturbed proteins, drug targets
and biological functions.

Given the above network, one can apply machine learning
techniques to identify how a drug treats a disease. However,
such an approach involves several challenges. Perhaps the
most important challenge is how to incorporate information
about the structure of the graph and potentially of node
and edge attributes in the learning model. For example, in
the case of the multiscale interactome network, in order to
determine whether a drug can treat a given disease, we need
to obtain an informative representation of drugs and their
proximities to diseases – that potentially is not fully captured
by graph statistics and other handcrafted features extracted
from the graph such as Jaccard’s coefficient and the Adamic-
Adar index (Liben-Nowell & Kleinberg, 2007). Recently,
a lot of attention has been devoted to the development of
algorithms that learn continuous representations of different
components of graphs, also known as embeddings. Such
representations capture the structural information of the
underlying graph. In other words, such a methodology
maps elements of the graph into a low-dimensional vector
space, while the graph structure is preserved. Note also
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that most embedding approaches are purely unsupervised.
Thus, the generated representations can further be used in
any downstream machine learning task, e. g., classification
or clustering.

Over the past years, a significant amount of effort has been
devoted to node embedding algorithms (Cai et al., 2018).
However, most existing node embedding algorithms are de-
signed to capture different types of node proximities (Tang
et al., 2015) or are motivated by application-specific con-
siderations (Dani et al., 2021) Such embeddings might fail
to capture the full complexity of the interactions between
nodes in highly complex networks such as the multiscale
interactome network. In this paper, we propose the Mass-
Enhanced Random Walk (MERW) algorithm, a new node
embedding algorithm which can capture the influence that
a node has on other nodes even if they are far from each
other in the considered network. The algorithm is inspired
by DeepWalk (Perozzi et al., 2014) which simulates ran-
dom walks over the input network and also employs ideas
from physics. Specifically, the algorithm learns a mass term
for each node which capture the node’s importance in the
network. Thus, the algorithm can learn whether specific
proteins, biological functions and drugs can significantly in-
fluence the rest of the network’s nodes. We empirically eval-
uate the proposed approach in the task of predicting which
drugs can treat a given disease. The proposed method out-
performs the baselines, thus suggesting that it captures more
accurately the biological functions through which target
proteins affect the functions of disease-perturbed proteins.

2. Related Work
Early methods in the field of graph representation learn-
ing follow a simple walk-based approach, i. e., they simu-
late random walks over the graph and treat the emerging
walks as sentences in some special language. They then
capitalize on ideas from natural language processing such
as the Skipgram model (Mikolov et al., 2013) to generate
node embeddings. DeepWalk (Perozzi et al., 2014) and
node2vec (Grover & Leskovec, 2016) are typical examples
of this family of algorithms. The main difference between
the two approaches is that the former simulates simple ran-
dom walks, while the latter performs biased walks. Another
family of approaches consists of algorithms which explicitly
preserve different types of node proximities. For instance,
LINE (Tang et al., 2015) optimizes an objective function
that preserves the first- and second-order proximities, while
GraRep (Cao et al., 2015) preserves high-order proximities
by applying SVD to high-order proximity matrices. Sev-
eral of the above algorithms can be unified into the matrix
factorization framework with closed form solutions (Qiu
et al., 2018). Other embedding approaches instead of node
proximities capture different properties of graphs such as

their community structure (Wang et al., 2017) or even edge
semantics (Gao et al., 2019). Besides the aforementioned
embedding approaches, graph autoencoders have also re-
cently emerged as a very useful framework for learning node
representations. Most of these models, including the varia-
tional graph autoencoder (Kipf & Welling, 2016), consist of
a graph neural network encoder and a simple inner product
decoder. The graph neural network encoder can be replaced
with linear models for interpretability purposes (Salha et al.,
2020). Graph autoencoders have also been generalized to
directed graphs (Salha et al., 2019). A detailed review of
node embedding algorithms is beyond the scope of this pa-
per; we refer the interested reader to the survey on graph
embeddings (Cai et al., 2018).

With regards to the main task of the paper, i. e., predicting
which drugs can treat a given disease, previous approaches
have used biased random walks to learn a diffusion profile
for each drug and disease, which identifies the proteins and
biological functions involved in a given treatment (Ruiz
et al., 2021). Neural network models have also been em-
ployed to uncover disease–disease, disease–gene and dis-
ease–pathway associations (Gaudelet et al., 2020). Recently,
graph neural networks were also employed to repurpose
drug compounds for the treatment of different human coro-
navirus diseases (Sugiyama et al., 2021).

3. Methodology
3.1. Preliminaries

Let G = (V,E) be an undirected graph consisting of a set
V of vertices and a set E of edges between them. We will
denote by n = |V | the number of vertices and by m = |E|
the number of edges. Let N (v) denote the set of neighbors
of node v ∈ V , i. e., N (v) = {u : (v, u) ∈ E}. The degree
of a node is equal to the number of edges incident to that
node, i. e., for a node v, deg(v) = |N (v)|. A walk in a
graph G is a sequence of vertices v1, v2, . . . , vk+1 where
vi ∈ V and (vi, vi+1) ∈ E for 1 ≤ i ≤ k. The length of
the walk is equal to the number of edges in the sequence.

In this paper, our objective is to learn an embedding for
each node of a graph such that these embeddings capture
as much structural information of the graph as possible, but
also the interactions between nodes. Formally, we aim to
learn a function f : V → Rd that maps nodes to feature rep-
resentations that can be then utilized for some downstream
prediction task such as link prediction or influence predic-
tion. Here d is a hyperparameter specifying the number of
dimensions of the generated representations.

3.2. Mass-Enhanced Random Walk (MERW)

Following previous studies (Perozzi et al., 2014; Grover &
Leskovec, 2016), the proposed approach first simulates a
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Figure 1. An illustration of the proposed approach. Given a heterogeneous graph G, whose nodes correspond to drugs, diseases, proteins
and biological functions, the goal is to predict whether a drug can treat a disease. The algorithm first simulates a number of random
walks over the graph to produce sequences of nodes. Then, it extracts training samples from those sequences and uses them to learn node
embeddings along with mass terms which capture the influence of the nodes in the graph. Finally, pairs of drug and disease embeddings
are fed to a classifier to predict the probability of a treatment relationship between them.

number of random walks over the input graph G. Specif-
ically, the algorithm starts a specific number of random
walks (t walks in total) at each node of the graph v ∈ V .
Given the root node of a walk, for a number of steps (which
is equal to the length of the walk to be simulated minus
one) the algorithm samples uniformly at random one of the
neighbors of the last visited node, i. e., one node from the
set N (v) where v is the last node visited by the walk. In
our experiments, we set the length of the random walks to
be fixed and equal to L. Thus, we end up with t|V | random
walks in total. These walks form the training set of the
algorithm.

Then following previous work (Mikolov et al., 2013), the
proposed algorithm maximizes the co-occurrence probabil-
ity among the nodes that appear within a window w in a
random walk. More specifically, a window slides across
the walk, and given the representation vector of the center
node, the proposed algorithm maximizes the probability of
its neighbors in the walk. Each node vi ∈ V is associated
with two types of embeddings: (1) one employed when the
node serves as the central node of the window (embedding
ui); and (2) one employed when the node appears in the
context of another node (embedding vi). For a center node
vi and of one of its neighbors (within the window) vj , we
model the co-occurrence probability as follows:

p(vj |vi) = σ
(
mi mj − λ log ||ui − vj ||2

)
where λ ∈ R+ is a hyperparameter, and mi, mj are train-
able parameters (scalar values) which can be thought of as
mass parameters. Such mass parameters have been also
adopted in previous studies in the context of graph autoen-
coders (Salha et al., 2019). We expect them to capture the
importance of the different nodes, i. e., some nodes are more
influential than others in the graph. For instance, in a scien-
tific publications citation network, seminal articles are more
influential than the rest of the articles. Thus, two influential

nodes are more likely to be connected to each other by an
edge than two nodes that are not very influential. Regarding
the hyperparameter λ, it can be tuned by cross-validation.
The goal of this parameter is to balance the contribution
of the distance of the two node embeddings and of their
mass parameters to the loss function. Increasing λ forces
the model to give more importance to the symmetric node
proximity rather than the mass parameters that capture the
global influence of a node on its neighbors.

To learn the node embeddings ui,vi and the mass term mi

for each node i ∈ V , the proposed model minimizes the
following loss function:

L = −
n∑

i=1

( ∑
j∈Ni

log σ
(
mi mj − λ log ||vi − uj ||2

)
−

K∑
k=1

Ej∼P (v)

[
log σ

(
− (mi mj − λ log ||vi − uj ||2)

)])
where Ni = {j : uj ∈ N (vi)} is the set of node indices
of the neighbors of node vi, P (v) is a noise distribution,
and K is the number of negative samples to be drawn for
each node. We optimize the above function using stochastic
gradient ascent over the model parameters. The derivatives
are estimated using the backpropagation algorithm. The
first term of the loss function maximizes the probability
of co-occurrence for the central node and nodes that lie
in its context window, while the second term randomly
samples some nodes that don’t lie in the context window
and minimize their probability of co-occurrence. Thus, the
objective is to distinguish the nodes that lie in the context
window from draws from the noise distribution P (v) using
logistic regression, where K negative samples are drawn for
each node. The random nodes are sampled based on their
frequency of occurrence. Specifically, P (v) = U(v)3/4/Z
where U(v) is a unigram distribution (i. e., probability of
finding a specific node in the set of random walks) and Z is
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a normalization constant.

Once the model is trained, we can retrieve the embedding
ui of each node i ∈ V . The generated representations
are general and independent of the downstream prediction
task. In this work, we focus on predicting how effective a
drug is for a specific disease. Thus, to make predictions,
we concatenate the embedding of the drug with that of the
disease, and we feed the emerging vector to some standard
classifier (e. g., multi-layer perceptron). An illustration of
the proposed algorithm is provided in Figure 1.

4. Experiments
Our implementation is publicly available on github.

Datasets. We evaluate the proposed node embedding al-
gorithm on a multiscale interactome network (Ruiz et al.,
2021). It consists of proteins, drugs, diseases and biolog-
ical functions. Specifically, it uses the physical interac-
tion network between 17, 660 proteins, and the hierarchy
of 9, 798 biological functions, in order to capture the prin-
ciples of effective treatments across 1, 661 drugs and 840
diseases. It contains 478, 728 edges and 5, 926 unique ap-
proved drug–disease pairs.

Experimental setup. We perform 5-fold cross validation.
We hold out one of the 5 folds and consider the drugs con-
tained in it as the set of test drugs. The remaining drugs
are considered as the train drugs. Subsequently, we create
a train set of diseases using all approved indications of the
train drugs and a test set of diseases using all approved indi-
cations of the test drugs. Within a given split (i. e., ”train”
or ”test”), we evaluate performance using only that split’s
sets of drugs and diseases (i. e., for testing performance, we
use ”test drugs” and ”test diseases”). For every disease in
the split of interest, each model produces a ranking of the
corresponding drugs. To generate the random walks, we
set the walk length equal to 10 and the number of walks
equal to 20. We use embeddings size equal to 128 and we
train the model for 50 epochs. For the classifier we use a
multi-layer perceptron with 2 hidden layers, and we train it
for 25 epochs.

Metrics. To evaluate the rankings produced by the differ-
ent approaches, we use two metrics: (1) Average Preci-
sion (AP); and (2) Recall@50. AP is a way to summarize
the precision-recall curve into a single value representing
the average of all precisions. AP is computed as follows:
AP = 1

m

∑N
k=1 P (k) · rel(k), where m is the number of

relevant items, N is the number of recommended drugs,
P (k) is the precision calculated only for the recommenda-
tions from rank 1 to k, rel(k) is an indicator of whether that
k-th drug was relevant (rel(k) = 1) or not (rel(k) = 0).
Recall@50 is the proportion of relevant drugs found in the
top-50 recommendations.

Table 1. Reported values averaged across five-fold cross validation
on drug-disease treatments dataset (Ruiz et al., 2021).

Method Avg Prec Rec@50

Protein Overlap 0.064 0.298
Functional Overlap 0.050 0.237
Molecular-scale Interactome 0.065 0.264
Diffusion Profiles 0.091 0.347
node2vec + MLP 0.075 0.377
MERW + MLP 0.115 0.501
MERW + RF 0.079 0.261
MERW + 1-NN 0.081 0.308
MERW + 3-NN 0.093 0.333
MERW + 5-NN 0.085 0.331

Baselines. We compare MERW against the following two
node embeddings algorithms: (1) node2vec (Grover &
Leskovec, 2016); and (2) Diffusion Profiles (Ruiz et al.,
2021). We also compare it against the following methods
(we use the results reported in (Ruiz et al., 2021)): (3)
Molecular-scale Interactome; (4) Functional Overlap; and
(5) Protein Overlap. The first two baselines use the same
input as MERW, but use different approaches to learn node
representations. The third baseline uses a molecular-scale
interactome as the input graph, which does not exploit the
biological functions.

Results. We report the mean average precision and the
mean Recall@50 across the diseases in Table 1. Our model
outperforms all the baselines by a large margin. Specifi-
cally, MERW offers an increase of 53.33%, 32.89% over
node2vec and an increase of 26.37%, 44.38% over Diffu-
sion Profiles in Average Precision and Recall@50 respec-
tively. Our results thus indicate that the proposed algorithm
can learn node representations useful for identifying po-
tential drug-disease treatments. We also experiment with
different classifiers which all take as input pairs of drug-
disease embeddings. The considered classifiers include
a multi-layer perceptron (MLP) with 2 hidden layers, a
Random Forest classifier (RF) with 100 estimators, and a
k-nearest neighbors classifier (k-NN) with k ∈ {1, 3, 5}.
We observe that MLP achieves the best results, due to its
expressive power and its ability to process high dimensional
embeddings.

5. Conclusion
We have introduced a new way of generating node embed-
dings using a mass-enhanced random walk approach. For
each node in the graph, besides its embedding, we also learn
a mass term that captures the influence of this node in the
whole network. We demonstrate the efficiency of our algo-
rithm in the drug repurposing task. Our method achieves
significant improvement over its competitors in terms of
average precision and recall.

https://github.com/MichailChatzianastasis/Mass-Enhanced-Node-Embeddings-for-Drug-Repurposing
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based in silico drug efficacy screening. Nature communications,
7(1):1–13, 2016.

Huttlin, E. L., Bruckner, R. J., Paulo, J. A., Cannon, J. R., Ting,
L., Baltier, K., Colby, G., Gebreab, F., Gygi, M. P., Parzen, H.,
et al. Architecture of the human interactome defines protein
communities and disease networks. Nature, 545(7655):505–
509, 2017.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley,
P. Molecular graph convolutions: moving beyond fingerprints.
Journal of Computer-aided Molecular Design, 30(8):595–608,
2016.

Kipf, T. N. and Welling, M. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308, 2016.

Liben-Nowell, D. and Kleinberg, J. The link-prediction prob-
lem for social networks. Journal of the American Society for
Information Science and Technology, 58(7):1019–1031, 2007.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean,
J. Distributed representations of words and phrases and their
compositionality. In Advances in Neural Information Processing
Systems, pp. 3111–3119, 2013.

Nikolentzos, G., Tixier, A. J.-P., and Vazirgiannis, M. Message
passing attention networks for document understanding. In Pro-
ceedings of the 34th AAAI Conference on Artificial Intelligence,
pp. 8544–8551, 2020.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learn-
ing of social representations. In Proceedings of the 20th Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp. 701–710, 2014.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J. Net-
work embedding as matrix factorization: Unifying deepwalk,
line, pte, and node2vec. In Proceedings of the eleventh ACM
International Conference on Web Search and Data Mining, pp.
459–467, 2018.

Ruiz, C., Zitnik, M., and Leskovec, J. Identification of disease
treatment mechanisms through the multiscale interactome. Na-
ture communications, 12(1):1–15, 2021.

Salha, G., Limnios, S., Hennequin, R., Tran, V.-A., and Vazir-
giannis, M. Gravity-inspired graph autoencoders for directed
link prediction. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp.
589–598, 2019.

Salha, G., Hennequin, R., and Vazirgiannis, M. Simple and effec-
tive graph autoencoders with one-hop linear models. In Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 319–334, 2020.

Sugiyama, M. G., Cui, H., Redka, D. S., Karimzadeh, M., Rujas,
E., Maan, H., Hayat, S., Cheung, K., Misra, R., McPhee, J. B.,
et al. Multiscale interactome analysis coupled with off-target
drug predictions reveals drug repurposing candidates for human
coronavirus disease. Scientific reports, 11(1):1–18, 2021.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. Line:
Large-scale information network embedding. In Proceedings
of the 24th International Conference on World Wide Web, pp.
1067–1077, 2015.

Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., and Yang, S. Commu-
nity preserving network embedding. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence, pp. 203–209, 2017.

Zitnik, M., Agrawal, M., and Leskovec, J. Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics,
34(13):i457–i466, 2018.


