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Abstract

Despite being the widely-used gold standard for
linking common genetic variations to phenotypes
and disease, genome-wide association studies
(GWAS) suffer major limitations, partially at-
tributable to the reliance on simple, typically lin-
ear, models of genetic effects. More elaborate
methods, such as epistasis-aware models, typi-
cally struggle with the scale of GWAS data. In
this paper, we build on recent advances in neu-
ral networks employing Transformer-based archi-
tectures to enable such models at a large scale.
As a first step towards replacing linear GWAS
with a more expressive approximation, we demon-
strate prediction of gout, a painful form of in-
flammatory arthritis arising when monosodium
urate crystals form in the joints under high serum
urate conditions, from Single Nucleotide Variants
(SNVs) using a scalable (long input) variant of the
Transformer architecture. Furthermore, we show
that sparse SNVs can be efficiently used by these
Transformer-based networks without expanding
them to a full genome. By appropriately encoding
SNVs, we are able to achieve competitive initial
performance, correctly classifying over 60% of
the approximately balanced test set (AUROC =
65%), using nothing but the genotype. Moreover,
the confidence with which the network makes its
prediction is a good indication of the prediction
accuracy. Our results indicate a number of oppor-
tunities for extension, enabling full genome-scale
data analysis using more complex and accurate
genotype-phenotype association models.
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1. Introduction
Genome-wide association studies over large cohorts are the
most powerful approach for identifying genotypes associ-
ated with phenotypes. As an example, studying urate and
gout, GWAS have identified the major urate transporters
and transcription factors involved in the kidney (Leask &
Merriman, 2021; Boocock et al., 2020). Additionally, esti-
mated effects of causal variants from GWAS can improve
prediction of phenotypic outcomes. Thus the availability of
large data sets has brought a new era, with the development
of predictive models for complex diseases using genotypes
and clinical variables. However, with respect to gout and its
related traits, only a small handful of studies have attempted
to predict the phenotype using genotypes (genetic risk score)
and demographics, and with varying accuracy (Tin et al.,
2019; Zhang & Lee, 2020; Sun et al., 2022).

Prediction of a trait is limited by two main factors: heri-
tability of the trait and accurate estimation of the underlying
genetic effects (Wei et al., 2014). Thus, current methods
underlying the generation of GWAS data (e.g. at the UK
Biobank (UKBB) (Sudlow et al., 2015)) bring challenges for
prediction, i.e. it is typical to opt for simple but biologically
unrealistic models, such as the linear model, in data anal-
yses to enable genome-wide screens for single nucleotide
variants (SNVs) with significant effects on (disease) pheno-
types. As a result, most GWAS assume the independence
of individual SNV effects on the phenotype, and therefore
can’t model gene-gene interactions (epistasis). Additionally,
typical GWAS are done using a simple additive model, that
fails to account for potential dominance effects of different
genotypes (Zhu et al., 2015; Hivert et al., 2021). They also
often simplify complex multi-dimensional phenotypes to
a one-dimensional response variable (Lienkaemper et al.,
2018). If epistasis contributes to the genetic architecture of
a trait, then identifying epistatic variants is important for
improving the predictive power of a GWAS (Crona et al.,
2017). Current methods for detecting epistatic interactions
are limited computationally and statistically, and developing
methods to overcome these challenges is difficult (Wei et al.,
2014; Elmes et al., 2021b;a).

Deep neural networks, including Transformer-based ones
initially designed for natural language processing (NLP)
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tasks (Vaswani et al., 2017), have recently been successfully
employed to analyse molecular sequence data, with the most
successful and widely-known example being AlphaFold-2
(Jumper et al., 2021). These approaches have shown great
promise in both scalability and supporting complex models,
such as residue-residue interactions in proteins.

Presently, however, such architectures are capable only of
handling sequences of modest length, such as those encod-
ing specific proteins. Recently, and in parallel, Transformer-
based architectures for NLP have been developed that aim
to accommodate extended bodies of text (Wang et al., 2020;
Choromanski et al., 2020). Here, we combine these two
directions of research and present a Transformer-based deep
neural architecture for GWAS data, including a purpose-
designed SNV encoder, that is capable of modelling gene-
gene interactions and multidimensional phenotypes, and
which scales to the whole-genome sequencing data standard
for modern GWAS. We trained our model on data from the
UK Biobank (UKBB)(Sudlow et al., 2015) to predict gout;
that is, we used genotyped SNV data as an input and the
patient’s gout diagnosis as an output. The training set was
composed of 13,143 cases, of which 6,624 had gout and
6,519 did not.

1.1. Transformers background

Neural networks using Transformer blocks have been ap-
plied not only to natural language processing tasks (Devlin
et al., 2018) but also to the protein folding problem (Jumper
et al., 2021) and prediction of nucleotides in DNA sequences
based on upstream and downstream context (Ji et al., 2021).
The key novelty of the Transformer block is the use of the
attention mechanism (Vaswani et al., 2017), where self-
attention “heads” assign a relevance score for every token
in the sequence with respect to the rest of the tokens via
attention calculations. These calculations work by project-
ing token vectors onto d-dimensional key K, query Q, and
value V vectors, then taking the following dot products of
these projections for each head.

Attention(Q,K,V) = softmax

(
QK⊤
√
d

)
V (1)

The time and space complexity of attention calculation in
Eq. 1 is quadratic in the input sequence length n. Significant
efforts have recently been made to reduce this cost (Zaheer
et al., 2020; Rae et al., 2019; Beltagy et al., 2020). One
of the proposed solutions is the Linformer model (Wang
et al., 2020), which we build on in this study. As a result
of a singular value decomposition analysis on the attention
calculation, it is demonstrated (Wang et al., 2020) both the-
oretically and experimentally that the attention calculation
can be reduced from quadratic to linear by including two

learnable low-dimensional projections over Eq. (1).

2. Methodology
Data. We obtained SNV data for approximately 487, 000
individuals from the UKBB data bank. For each individual,
around 870, 000 SNVs were measured, and a further 90 mil-
lion imputed. We pre-process data in three steps: 1) extract
a sequence of SNVs, with corresponding genome positions,
for each person, 2) build a mapping from each SNV to an
integer as per Table 1, 3) use this mapping to construct a
sequence of integers representing the SNV sequence for
each person – see the top of Figure 1.

We separate each SNV into two components, its position
and its major/minor alleles. SNV positions are preserved as
integer positions within the genome sequence. We mapped
different variants and their zygosity to 32 possible combi-
nations as follows. We take the SNV: [major]/[minor]
and combine the major and minor alleles into a single word
depending on the zygosity, encoding two major, two minor,
or one major/one minor allele as follows:

Double major ‘[major allele]’
Double minor ‘[minor allele]

Single major, single minor ‘[major allele],[minor allele]’

We used insertion (ins) and deletion (del) tokens to repre-
sent any form of insertion and deletion, with respect to the
reference genome, in the given SNV. We follow (Cahyawi-
jaya et al., 2022) in shortening long sequences with an ‘I’
token, representing all nucleotides after the first. Doing so
allows us to remove the large number of unique long nu-
cleotide sequences from our mapping. A sequence of more
than one nucleotide is then encoded as ‘AI’,‘CI’,‘GI’ or
‘TI’, depending on the nucleotide in the first position. In any
individual, approximately 2% of SNVs are unknown. That
is, we do not know whether either chromosome possesses
this variant. We record these as the ‘nan’ token. Finally, we
mapped the resulting 32 possible combinations to 32 inte-
gers. For example, if we have an SNV that has ‘G, TGAA’
major and minor values, we encode this as ‘G, ins’, which
maps to 21. For the complete list of the 32 combinations,
see Table 1.

Table 1: SNV encoding. Homozygous alleles are encoded
as ‘X’, heterozygous as ‘X,Y’, I encodes unique sequences.

‘nan’ : 00 ‘ins’ : 01 ‘del’ : 02 ‘G’ : 03
‘A’ : 04 ‘C’ : 05 ‘T’ : 06 ‘CI’ : 07

‘GI’ : 08 ‘TI’ : 09 ‘AI’ : 10 ‘G,A’ : 11
‘A,G’ : 12 ‘G,C’ : 13 ‘C,T’ : 14 ‘G,T’ : 15
‘C,G’ : 16 ‘T,C’ : 17 ‘A,ins’ : 18 ‘A,C’ : 19

‘CI,del’ : 20 ‘G,ins’ : 21 ‘GI,del’ : 22 ‘T,G’ : 23
‘C,A’ : 24 ‘TI,del’ : 25 ‘A,T’ : 26 ‘C,ins’ : 27

‘T,ins’ : 28 ‘AI,del’ : 29 ‘T,A’ : 30 ‘AI,ins’ : 31
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Figure 1: Pre-processing of SNV sequences. Given an input
set of SNVs for each person, the combination of SNVs
and zygosity is mapped to one of 32 possible cases. Each
case is encoded as an integer, and each person’s sequence is
encoded as a sequence of these integers.

We classify each individual as either having or not having
gout following the method in (Cadzow et al., 2017), with
the exception being that classification is now based on self-
report or urate-lowering therapy (ULT) only, defined as an
individual self-reporting use of allopurinol, probenecid, or
colchicine, unless diagnosed with leukemia or lymphoma.

We consider SNVs from the genotyped data only (unim-
puted), with a minimum allele frequency of 10−4, exclud-
ing values with a Hardy-Weinberg equilibrium exact test
p-value threshold of 10−6. Among these, we use plink1.9
(Purcell et al., 2007) to find measured or imputed SNVs
associated with urate via linear regression, with a p-value
< 10−1. The resulting data set contains ≈ 66, 000 SNVs.
Since the majority of UKBB participants do not have gout,
we randomly sub-sample the non-gout cases until we have
≈ 9, 000 of each. 25% of these are reserved for the test
set, with remaining 70% used for training, and 5% saved
for later verification. As well as genotype information, we
include age, sex, and BMI for each individual.

2.1. Transformer Network Architecture

We embed each SNV as a one-hot encoding of the token (Ta-
ble 1), concatenated with a sine/cosine positional encoding.
This is then passed into a Transformer encoder followed
by a binary output block for gout/non-gout classification.
Self-attention blocks within the encoder use the Linformer
architecture (Wang et al., 2020).

The output takes the classification token (first token of the
encoder output), reduces it to two cases with a fully con-
nected layer, and classifies with binary Softmax. Our archi-
tecture is summarised in Figure 2.

We used a 96 element embedding (where the input uses 32
elements for the token and 64 for the position), 4 attention
heads, 6 layers, and a Linformer k-value of 96. We trained
using the AMSGrad variant of the AdamW algorithm (Reddi
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(SNV) (Position Encoding)

SNVs: 1, 6, ...
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Figure 2: Architecture of SNVformer. Input (genotype) is
shown at the top, followed by the embedding, network’s
layers, and output at the bottom.
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Figure 3: (a) Distribution of output scores produced by our
network. Scores can be interpreted as network’s confidence
indicator. (b) Comparison between accuracy (vertical) and
output score (horizontal) produced by our network. Includes
the 95% confidence interval from 1,000 bootstrap samples.

et al., 2019) for 60 epochs with a learning rate of 10−7 using
batches of size 10 on one 48GB Nvidia Quadro RTX 8000
GPU.

3. Results
We evaluate our network using a test set of 4, 694 individu-
als, approximately half of whom have gout. For each sample,
the network outputs a score in the range [0, 1], which we
interpret as a prediction that the individual has gout if it is
greater than 0.5, and that they do not have gout if it is less
than 0.5. The exact score can be interpreted as a confidence
indicator for that prediction, and we see in Figure 3b that
as scores deviate from 0.5, the accuracy of the prediction
increases significantly. Moreover, we see in Figure 3a that
scores less than 0.1 or greater than 0.9, where accuracy is



SNVformer

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC

ROC curve (area = 0.83)

Figure 4: ROC curve when trainied on 66k genotyped SNVs
combined with Age, Sex, and BMI.

around 80%, are not uncommon. We will build on this to
perform an analysis of which features are contributing to
the certainty and uncertainty of predictions. Based on the
output score of the network, we achieve an area under the
receiver operating characteristic curve (AUROC) of 0.83
(Figure 4).

4. Discussion and Work in Progress
Although our preliminary attempt described in this paper
has already achieved prediction accuracy similar to the best
performing methods (0.84, see below), there are paths to
architectural and data-driven improvements.

Other Transformer architectures have been proposed for the
problem of learning over long sequences (in NLP). Memo-
rizing Transformers learn to use a fixed-length “short-term”
memory to store tokens expected to be useful later (Wu et al.,
2022), while Jaegle et al. iterate over read-process-write
tasks. The latter approach identifies and queries missing
information from the input, processes and accumulates it in
a latent space, and uses that latent representation both for
prediction and to further query the input. Radically different
from Linformer in their approaches to distant dependencies,
these architectures may further improve the identification of
distant interacting SNVs in long sequences.

Although GWAS analysis provides some explanatory power
by identifying SNVs most predictive of gout, it is com-
monly limited to occurrence or co-occurrence; predictive
power could be substantially improved if relevant broader
gene-gene (including higher-order) interactions could be
identified. A popular method for explaining predictions in
Transformers is by analysing the values of the attention ma-
trix, often by visualisation (Vig, 2019), since these reflect
the task-dependent importance of each token (Wiegreffe &
Pinter, 2019). Alternatives include methods to compute and
propagate trained attention-based token relevancy scores
(Chefer et al., 2021), or to generate higher-level conceptual

explanations (Rigotti et al., 2021). We plan to apply such
methods to identify which specific SNVs and combinations
support phenotype (gout) prediction. We shall also seek to
improve the SNV sequence representation for prediction
by pretraining embeddings using sequences from the whole
UKBB, using large-scale language-modelling techniques,
and, based on preliminary experiments, by investigating
other encodings for the SNVs themselves.

We intend to compare our method to polygenic risk-scores
(Richardson et al., 2019), which for gout and its related
traits have achieved prediction accuracy (AUROC) of be-
tween 0.64 and 0.91 (Zhang & Lee, 2020; Tin et al., 2019;
Sun et al., 2022) depending on whether the model includes
additional factors such as demographics and/or clinical fac-
tors. For example, Sun et al. have developed a prediction
model for clustering the renal underexcretion of urate phe-
notype using genetic and clinical variables, achieving AU-
ROC of 0.91 when 7 clinical measures (age, hypertension,
nephrolithiasis, blood glucose, serum urate, urea nitrogen,
and creatinine) are added. For gout, prediction accuracy
(AUROC) improved from 0.68 to 0.84 with the addition
of age and sex (Tin et al., 2019). It will be important to
assess how these phenotypic and other variables impact the
prediction accuracy of our approach given that certain en-
vironmental factors might also modify the effect of genetic
risk.

Due to the facility of Transformer models in representing
complex language, they have the potential to use a far wider
range of supporting data than that used in previous work
on gout prediction. In particular, a major focus of our
future work will involve enabling our models to access
existing well-established evidence of interactions directly
from the scientific literature, providing context to the Trans-
former learner itself. We will apply existing techniques
from our labs and others for open domain Transformer-
based question-answering against the biomedical literature
and therefore extract evidence of genomic interactions, in-
cluding interactions supported by multi-step protein-protein
interaction pathways.
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Krämer, B. K., Kronenberg, F., Kubo, M., Kühnel, B.,
La Bianca, M., Lange, L. A., Lehne, B., Lehtimäki, T.,
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