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Abstract
The recent emergence of large-scale integrated
single cell atlases allow to reformulate many anal-
ysis steps in novel single cell transcriptome data as
a reference mapping problem. Current deep learn-
ing mapping approaches result in a fixed, non-
linear function of input gene expression learned
from the reference, which is then used to project
new query datasets. These methods, therefore,
assume that major axes of biological variations
are shared between query and the reference. This
does not hold when applying such methods to
study and compare single cells from perturbation
experiments, disease traits or organoids in the con-
text of control cells catalogued in the reference
atlas. In this work, we aim to explore continual
learning as a means to adapt more flexibly to do-
main shifts. In particular we introduce a Contin-
ual Learner Conditional Variational Autoencoder
(CLCVAE), as a architecture surgery optimization
strategy for continuously learning new variations
in the query to address the challenge of single-cell
reference atlas mapping for case-control and per-
turbation studies, and report improvements over
the standard architecture surgery in identification
of cell types in the query that are not present in
the reference.

1. Motivation: Mapping disease samples to
healthy single-cell references is challenging

The existing deep learning frameworks for reference atlas
construction and mapping use Conditional Variational Au-
toencoder (CVAE) (Sohn et al., 2015) models to integrate
the data by depleting the lower-dimensional representation,
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that is the latent representation, of the data learned by the
autoencoder from batch effects and dataset-specific vari-
ations. During reference construction, the CVAE model
learns a non-linear function, that is non-linear weighted
combinations, of input gene expression, as well as condi-
tional weights that capture the batches in the reference. Dur-
ing reference mapping, specifically in architecture surgery
(aka Transfer Learning) framework proposed by Lotfollahi
et al. (2022), the non-linear projection function and condi-
tional weights learned on the reference are fixed, and new
conditional weights are added to the model to capture new
batches added to the data. The new conditional weights
are learned such that overall the model results in decent
reconstruction of input data. Therefore, learning these new
conditional weights serves the purpose of data alignment
only, and in practice the new data is projected using a fixed,
non-linear function learned from the reference.

The recent Human Lung Cell Atlas (HLCA) study (Sikkema
et al., 2022) integrated a vast number of normal lung single-
cell datasets and extended this reference atlas with cells
from lung disease and cancer cells using the Transfer Learn-
ing framework of Lotfollahi et al. (2022) to study disease-
associated cell types and states, and compare biomarkers
in normal and malignant cells. Projection of cancer and
disease cells worked reasonably well in this study and the
annotations transferred from the reference to the projected
data were found to be mostly correct (e.g. cancer cells were
correctly annotated as unknown since they were absent in
the reference), despite the biological variations not being
present in the reference, perhaps owed to the highly non-
linear nature of the model. These findings though were
based on a, rather modest, uncertainty score cut-off (0.3),
which was chosen from ROC curves. One has to note that
should they have gone with a higher cut-off, say 0.5, these
cancer cells would have been miss-annotated as normal
lung or immune cells. Indeed, the study flagged that incor-
rect annotation transfers (annotations transferred with high
certainty not matching the original label) were frequently
observed for cell types that are part of a continuum, and
those that were not present in the reference, but had high
transcriptional similarity to cell types present in the refer-
ence. Overall the HLCA effort highlighted challenges in
single-cell reference atlas mapping that become very rele-
vant as interest in mapping disease samples to large healthy
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references, identification of disease-specific cell states not
present in the reference and data granularity increases.

2. Continual Learner Conditional Variational
Autoencoder (CLCVAE) to learn new
variations in the query

One approach to allow a machine learning model to learn
new variations emerging from the query data is to fine-
tune the reference-initialized model on the query dataset.
The fine-tuned model, however, suffers from forgetting the
variations learned in the reference, a phenomena known as
catastrophic forgetting (Kirkpatrick et al., 2017; Nguyen
et al., 2017). Benchmarks on single cell data have therefore
shown that fixing the projection function, that is freezing the
expression weights in architecture surgery, prevents catas-
trophic forgetting, which also prohibits adaptation to new
variations (Lotfollahi et al., 2022).

The goal of continual learning (CL) is to learn new tasks
sequentially, without forgetting the knowledge of previously
learned tasks (Kirkpatrick et al., 2017). Inspired by this
fundamental concept in CL, an alternative less stringent
approach to learn new variations, therefore, is to penalize
changes in weight estimates of model parameters such that
the new estimate for a parameter does not deviate from the
old estimate, if the parameter is important for optimal recon-
struction of reference, rather than freezing the weights. This
is achieved by a Elastic Weight Consolidation regularizer
(Kirkpatrick et al., 2017) and presenting the query model
with examples from the reference during training.

2.1. Elastic Weight Consolidation

Let θ∗ denote the parameters of the reference model. Let
θ denote the current state of the parameters for the query
model. Let F denote the diagonal Fisher information matrix
of θ∗. The Fisher information matrix is the second derivative
of the likelihood near an optimum. Therefore, it contains
information about which parameters were important in the
variational model trained on the reference. Recall that in the
standard VAE approach the likelihood is approximated by
the variational lower bound. Therefore, the Fisher informa-
tion matrix here is computed as the gradient with respect to
the variational lower bound.

In this work, we add a Elastic Weight (EW) penalty to CVAE
models, say, scVI (Lopez et al., 2018) or scANVI (Xu et al.,
2021), to minimize deviation of θ from θ∗ according to
the importance of parameter to the reference model stored
in F . The CVAE models are foundational for single-cell
reference mapping, where batch effects are widespread. We
then consolidate this loss with the loss for the query model
at each iteration over the training batch. The loss that is

minimized, therefore, is:

L(θ) = LCVAE(θ) +
λ

2

∑
i

Fi (θi − θ∗i )
2,

where LCVAE(θ) is the loss from the variational model (i.e.
base model), i labels each parameter and λ sets the contribu-
tion of EW penalty to the total loss. For example, in the case
of the scVI model, LCVAE(θ) is the sum of reconstruction
loss and KL-divergence loss.

Our approach, hence, can be described as follows: We ini-
tialize the query model with weights learned in the reference
model. At each iteration over a training batch, we compute
the loss of the model and the EW loss computed for the
current state of the model, using the reference model and
cells from the reference. We refer to this model as Contin-
ual Learner Conditional Variational Autoencoder, CLCVAE,
herein.

3. Results
3.1. CLCVAE is as good as architecture surgery in

batch effect removal

An important characteristic of a reliable model is that the
latent representations should be free from unwanted varia-
tions and batch effects. We examined if batch effects are
efficiently removed from the latent space of CLCVAE.

We used a standard integration benchmark Pancreas dataset
described in Luecken et al. (2022) containing cells se-
quenced by nine sequencing technologies to assess data
integration and batch removal (Fig1. a-c). Cells from two
of the sequencing platforms, celseq2 and smartseq2
were left out as query datasets, and the reminder were used
to construct a reference using scVI model from scvi-tools
(Gayoso et al., 2021) using 2000 highly variable genes
(HVGs). We trained the query CLCVAE model as described
above. We compared the latent space of a surgery model
(scVI + scarches) (Fig1.a), with a model fine-tuned on the
query (Fig1.b) and the CLCVAE model (Fig1.c).

While the cells from different technologies mix well in the
latent space of both surgery and CLCVAE models (Fig1.a,c),
some technology-specific patterns were evident in the latent
space of the fine-tuned model (Fig1.b). This re-enforces that
fine-tuning the reference model on the query leads to forget-
ting (in this case, the variations due to batch in the reference),
and that the EWC regularization in the CLCVAE model is
essential to prevent forgetting. We further assessed batch in-
tegration and biological conservation by CLCVAE, surgery
and fine-tuned models using scIB (Luecken et al., 2022)
metrics (Fig1.d). The CLCVAE was marginally better in
batch silhouette (sil batch), cell type silhouette (sil labels),
cell type F1 scores and in preserving graph connectivity.
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Figure 1. The UMAP representation of latent spaces of pancreas integration benchmark dataset inferred by a architecture surgery b
fine-tuning the reference model on the query c CLCVAE model colored by cell type (lower) and sequencing technology (upper). d
quantitative evaluation of batch correction and biological preservation by scIB integration metrics for each model.

3.2. Mapping cancer samples to a reference of immune
cells

Next, we mapped a single-cell RNA-seq dataset of 4645 sin-
gle cells isolated from 19 melanoma patients, profiling ma-
lignant, immune, stromal, and endothelial cells in metastatic
melanoma tumors (Tirosh et al., 2016) to a reference of
immune cells described in (Lotfollahi et al., 2022) using
4000 HVGs in the reference (Fig2). The query contains cell
types that are present in the reference, namely T cells, NK
cells, B cells; cell types that are not present in the reference,
namely Cancer-associated Fibroblasts (CAFs), endothelial
cells (Endo.), malignant cells, as well as Macrophages
(Macro.) which are not present in the reference but have
high transcriptional similarity to cell types present in the ref-
erence. We transferred annotations from reference to query
cells using weighted predictions (the highest weight label
category, where weight is determined by distance from 50
nearest neighbour cells in the reference). As in the HLCA
study, we assigned cells with an uncertainty score greater
than 0.3 the unknown label.

We observed that the uncertainty scores for CAFs, endothe-
lial and malignant cells not present in the reference were
high for a larger proportion of cells in CLCVAE com-
pared to architecture surgery (Fig 2.a-b), indicating that
the model has learned query-specific variations. Fig2.c-d

is the heatmap of the proportion of cells in the query as-
signed to each cell type from the reference (rows of the
heatmap) for every cell type in the query (columns of the
heatmap). We observed less incorrect annotation transfers in
the latent space of CLCVAE (Fig2.d) compared to surgery
(Fig2.c). In particular, more CAF, endothelial and malignant
cells, which are not present in the reference, were labeled
as unknown by CLCVAE representation. Similar to surgery
results, the T cells in Tirosh et al. (2016) were found to
be a composite of CD4+ T cells and NKT cells. Although
CLCVAE performed well in labeling a larger number of
cells in the query not present in the reference as unknown,
the model could not distinguish Macrophages (Macro.) in
the query from CD14+ Monocytes in the reference, most
likely due to high transcriptional similarity of these two
populations.

3.3. Mapping healthy lung samples to Human Lung Cell
Atlas with non-overlapping cell types

We further mapped a dataset of healthy lung cells by Madis-
soon et al. (2021) to the HCLA using the pre-trained ref-
erence scANVI model provided by the authors, performed
cell type annotation transfer via weighted predictions as for
the melanoma dataset, and compared the distribution of the
uncertainty scores for representations learned by architec-
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Figure 2. Annotation transfer uncertainty score for single cells from metastatic melanoma tumors mapped to a reference of immune cells
for latent representations learned by a surgery and b CLCVAE. Heatmap of proportion of cells from each cell type in the query assigned
to cell type categories in the reference or the ”unknown” label by c surgery and d CLCVAE.

ture surgery and CLCVAE (Fig3). The dataset contains cell
types that are not present in the reference. For the surgery
results, we used the embedding of Madissoon et al. (2021)
(Meyer 2021) published by HLCA authors. We transferred
level-4 cell type annotations for this analysis. The findings
are based on the 2000 HVGs in the reference.

The HLCA study found that the 11 cell types highlighted in
green box were annotated incorrectly with high confidence
in the query, either due to high transcriptional similarity
with cell types in the reference or cells being part of a con-
tinuum. For 5/11 of these cell types, the tail distribution of
uncertainty scores in Fig3 were fatter in the representation
learned by CLCVAE compared to architecture surgery, sug-
gesting that their biological variation is better learned by
the proposed approach. These cell types are marked with
orange stars. For the rest of the cell type populations shown
in Fig3, which are cell types in the query that are present in
the reference, the score distribution was mostly comparable
to standard surgery, although we did observe a fatter tail
distribution for DC1 and SMG-DUCT cell types, which
could be indicative of query-specific cell type alterations.

4. Discussion and future directions
Single-cell reference atlases are diversifying. The Human
Lung Cell Atlas (Sikkema et al., 2022), Human lung Can-
cer Atlas (Salcher et al., 2022) and cross-tissue disease
atlas (Korsunsky et al., 2021) are just examples of refer-
ence atlases of growing complexity that enable biomarker
discovery, study of biological aberrations in malignancies
and drug-resistance mechanisms through mapping of newly
acquired samples onto these references. Accurate and robust
reference mapping algorithms would, hence, play crucial
roles for reliable inference.

In this work we presented a preliminary idea to improve
upon mapping disease, cancer and samples from perturba-
tion experiments in general to single-cell reference atlases.
We demonstrated that by allowing the model to remember
variations in the reference while training on the query data,
we could learn models that better distinguish cell types in
the query not present in the reference. A few limitations
remain to be addressed: 1- resolving cell types and states
that are distinct, but have high transcriptional similarity to
those in the reference. 2- Currently, raw samples from the
reference are required for the training of the query model.
Consequently, the computational train time is equivalent to
de-novo integration. A potential solution is to present the



Continual single-cell architecture surgery for reference mapping

Figure 3. Distribution of annotation transfer uncertainty scores for healthy lung cells mapped to HLCA for overlapping and non-overlapping
cell types.

model with latent representations of raw samples from the
reference (encoded data) rather than raw samples (Borde,
2021). Evaluations on more datasets should be considered.
3- In case of extending a reference by mapping multiple
query datasets sequentially, investigations are required to
assess if the reference representation remains unchanged to
avoid re-evaluation of integration upon the addition of each
query dataset.

Software and Data
All datasets used in this work are public and have been
referenced throughout the text.

The jupyter notebooks containing the code for training
CLCVAE using modified scvi-tools training plans and re-
sults for the analysis presented in this work will be avail-
able on github https://github.com/theislab/
icml_cbw_2022_clcvae
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